4,410 research outputs found

    Kinematics of the Outflow From The Young Star DG Tau B: Rotation in the vicinities of an optical jet

    Get PDF
    We present 12^{12}CO(2-1) line and 1300 μ\mum continuum observations made with the Submillimeter Array (SMA) of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The 12^{12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1 -- 2 km s−1^{-1} over distances of about 300 -- 400 AU. We interpret them as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.Comment: Accepted to Ap

    Controllability properties for the one-dimensional Heat equation under multiplicative or nonnegative additive controls with local mobile support

    Full text link
    We discuss several new results on nonnegative approximate controllability for the one-dimensional Heat equation governed by either multiplicative or nonnegative additive control, acting within a proper subset of the space domain at every moment of time. Our methods allow us to link these two types of controls to some extend. The main results include approximate controllability properties both for the static and mobile control supports

    Quantitative Quality Model for Evaluating Open Source Web Applications: Case Study of Repository Software

    Get PDF
    Many open source web applications exist today and universities also find them useful. For instance, universities now manage most of their research output by storing them in their respective institutional repositories. These repositories are often built as open source web applications and known as repository software. Several of these exist but three popular ones include: DSpace, EPrints and Greenstone (DEG). These three are open source and built by different institutions. Considering their increasing adoption and usage by universities today, it would be useful to have a model that can compare between the quality of two or more web applications and suggest the better option to an institution intending to adopt one. This paper therefore proposes a model for measuring quality in open source web applications (focusing on repository software) by adapting existing quality models. The proposed model is used to measure quality in DEG. The proposed model is validated through real data and the results presented and discussed. Overall, the model rated DSpace as the better option

    A Suite of Object Oriented Cognitive Complexity Metrics

    Get PDF
    Object orientation has gained a wide adoption in the software development community. To this end, different metrics that can be utilized in measuring and improving the quality of object-oriented (OO) software have been proposed, by providing insight into the maintainability and reliability of the system. Some of these software metrics are based on cognitive weight and are referred to as cognitive complexity metrics. It is our objective in this paper to present a suite of cognitive complexity metrics that can be used to evaluate OO software projects. The present suite of metrics includes method complexity, message complexity, attribute complexity, weighted class complexity, and code complexity. The metrics suite was evaluated theoretically using measurement theory and Weyuker’s properties, practically using Kaner’s framework and empirically using thirty projects

    Tool Support for Cascading Style Sheets’ Complexity Metrics

    Get PDF
    Tools are the fundamental requirement for acceptability of any metrics programme in the software industry. It is observed that majority of the metrics proposed and are available in the literature lack tool support. This is one of the reasons why they are not widely accepted by the practitioners. In order to improve the acceptability of proposed metrics among software engineers that develop Web applications, there is need to automate the process. In this paper, we have developed a tool for computing metrics for Cascading Style Sheets (CSS) and named it as CSS Analyzer (CSSA). The tool is capable of measuring different metrics, which are the representation of different quality attributes: which include understandability, reliability and maintainability based on some previously proposed metrics. The tool was evaluated by comparing its result on 40 cascading style sheets with results gotten by the manual process of computing the complexities. The results show that the tool computes in far less time when compared to the manual process and is 51.25% accurate

    Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower.</p> <p>Results</p> <p>Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences.</p> <p>Conclusion</p> <p>Eighty genes isolated from organ-specific cDNA libraries were identified as candidate genes for sunflower early response to low temperatures and salinity. Microarray profiling of chilling and NaCl-treated sunflower leaves revealed dynamic changes in transcript abundance, including transcription factors, defense/stress related proteins, and effectors of homeostasis, all of which highlight the complexity of both stress responses. This study not only allowed the identification of common transcriptional changes to both stress conditions but also lead to the detection of stress-specific genes not previously reported in sunflower. This is the first organ-specific cDNA fluorescence microarray study addressing a simultaneous evaluation of concerted transcriptional changes in response to chilling and salinity stress in cultivated sunflower.</p

    Magnetic dipolar ordering and relaxation in the high-spin molecular cluster compound Mn6

    Get PDF
    Few examples of magnetic systems displaying a transition to pure dipolar magnetic order are known to date, and single-molecule magnets can provide an interesting example. The molecular cluster spins and thus their dipolar interaction energy can be quite high, leading to reasonably accessible ordering temperatures, provided the crystal field anisotropy is sufficiently small. This condition can be met for molecular clusters of sufficiently high symmetry, as for the Mn6 compound studied here. Magnetic specific heat and susceptibility experiments show a transition to ferromagnetic dipolar order at T_{c} = 0.16 K. Classical Monte-Carlo calculations indeed predict ferromagnetic ordering and account for the correct value of T_{c}. In high magnetic fields we detected the contribution of the ^{55}Mn nuclei to the specific heat, and the characteristic timescale of nuclear relaxation. This was compared with results obtained directly from pulse-NMR experiments. The data are in good mutual agreement and can be well described by the theory for magnetic relaxation in highly polarized paramagnetic crystals and for dynamic nuclear polarization, which we extensively review. The experiments provide an interesting comparison with the recently investigated nuclear spin dynamics in the anisotropic single molecule magnet Mn12-ac.Comment: 19 pages, 11 eps figures. Contains extensive discussions on dipolar ordering, specific heat and nuclear relaxation in molecular magnet
    • …
    corecore