7 research outputs found
Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival
Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications
Simple Summary Peritoneal carcinomatosis mouse models as a platform to test, improve and/or predict the appropriate therapeutic interventions in patients are crucial to providing medical advances. Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational biomedical research. Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents
Advances in mRNA-based drug discovery in cancer immunotherapy
Introduction: Immune checkpoint inhibitors and adoptive T-cell therapy based on chimeric antigen receptors are the spearhead strategies to exploit the immune system to fight cancer. To take advantage of the full potential of the immune system, cancer immunotherapy must incorporate new biotechnologies such as mRNA technology that may synergize with already approved immunotherapies and act more effectively on immune targets.
Areas covered: This review describes the basics of mRNA biotechnology and provides insight into the recent advances in the use of mRNA for the local and systemic delivery of immunostimulatory antibodies, proinflammatory cytokines or for optimizing adoptive T-cell therapy.
Expert opinion: mRNA-based nanomedicines have great potential to expand the arsenal of immunotherapy tools due to their ability to simplify and accelerate drug development and their suitability for transient and local expression of immunostimulatory molecules, whose systemic and sustained expression would be toxic. The success of mRNA-based COVID-19 vaccines has highlighted the feasibility of this approach. Continuous advances in the delivery and construction of RNA-based vectors hold promise for improvements in clinical efficacy
Advances in mRNA-based drug discovery in cancer immunotherapy
Introduction: Immune checkpoint inhibitors and adoptive T-cell therapy based on chimeric antigen receptors are the spearhead strategies to exploit the immune system to fight cancer. To take advantage of the full potential of the immune system, cancer immunotherapy must incorporate new biotechnologies such as mRNA technology that may synergize with already approved immunotherapies and act more effectively on immune targets.
Areas covered: This review describes the basics of mRNA biotechnology and provides insight into the recent advances in the use of mRNA for the local and systemic delivery of immunostimulatory antibodies, proinflammatory cytokines or for optimizing adoptive T-cell therapy.
Expert opinion: mRNA-based nanomedicines have great potential to expand the arsenal of immunotherapy tools due to their ability to simplify and accelerate drug development and their suitability for transient and local expression of immunostimulatory molecules, whose systemic and sustained expression would be toxic. The success of mRNA-based COVID-19 vaccines has highlighted the feasibility of this approach. Continuous advances in the delivery and construction of RNA-based vectors hold promise for improvements in clinical efficacy
Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications
Simple Summary Peritoneal carcinomatosis mouse models as a platform to test, improve and/or predict the appropriate therapeutic interventions in patients are crucial to providing medical advances. Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational biomedical research. Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents
Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocytedeficient mice reconstituted with human NK cells
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival
Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy
Background BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections.
Methods Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/β receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions.
Results BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade.
Conclusion Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions