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Simple Summary: Peritoneal carcinomatosis mouse models as a platform to test, improve and/or
predict the appropriate therapeutic interventions in patients are crucial to providing medical advances.
Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational
biomedical research.

Abstract: Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorec-
tal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type
of tumor dissemination in the peritoneal cavity for which few therapeutic options are available.
Therefore, reliable preclinical models are crucial for research and development of efficacious treat-
ments for this condition. To date, a number of animal models have attempted to reproduce as
accurately as possible the complexity of the tumor microenvironment of human peritoneal carcino-
matosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts,
genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own
strengths and limitations, all of which can influence the subsequent translational results concerning
anticancer and immunomodulatory drugs under exploration. This review highlights the current
status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or
immunotherapeutic agents.

Keywords: peritoneal carcinomatosis; animal model; translational research; peritoneal microenviron-
ment; metastasis

1. Introduction

Peritoneal Carcinomatosis (PCa) refers to the metastatic involvement of the peri-
toneum, characteristic of advanced-stage cancer [1]. PCa in gastrointestinal (e.g., colorectal
cancer, gastric cancer) and gynecological (e.g., ovarian cancer) malignancies currently has a
poor prognosis with a median survival of under six months [2]. At present, cytoreductive
surgery in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) has
become widely accepted as an effective option to treat peritoneal metastasis [3,4]. How-
ever, locoregional HIPEC or pressurized intraperitoneal aerosol chemotherapy (PIPAC)
treatments are only feasible in a small number of patients, and severe side-effects have
been reported after peritoneal chemotherapy for PCa [5–7]. New therapeutic opportunities
and experimental strategies in PCa are needed, and preclinical studies may help provide
essential information about future successful clinical treatments.
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Approaches based on mouse models allow researchers to learn about the tissue mi-
croenvironment in highly complex and dynamic physiological and pathological systems,
such as cancer [8,9]. Clinical advances in cancer research as made over recent decades
are linked to the efficient use of preclinical models of tumorigenesis. These constitute a
critical tool to understand tumor growth and the interactions among different stromal and
malignant cells in the tumor microenvironment. Indeed, mouse models of cancer are key to
evaluating new therapeutic alternatives. In general, heterotopic syngeneic mouse models
are subcutaneous grafts of same-strain tumor cells in mice due to the easy follow up of
tumor growth. They represent a simple and accessible model, but suffer from the main
disadvantage of not adequately reproducing the natural tumor microenvironment. This
limitation is overcome by orthotopic engraftment (seeding tumor cells into the correspond-
ing tissue), which offers a more realistic approach and provides a more relevant tissue
microenvironment for assessing tumor development and treatment efficacy [10]. While
syngeneic orthotopic models mimic more efficiently the disease biology of human disease,
their main drawback relates to the monitoring of tumor progression, which requires the
use of reporter genes, invasive surgical procedures or imaging methods such as real-time
in-life fluorescence and bioluminescence imaging. Despite these limitations, syngeneic
mouse models offer clues and proofs of concept in immunocompetent hosts and thereby
represent an excellent preclinical platform to test compounds based on immuno-oncology
targets to treat cancer [11].

Human tumor xenografted mouse models are also often used in preclinical cancer
studies. Xenograft models constitute the cornerstone of the study of antineoplastic targeted
compounds and tyrosine kinase inhibitors [12]. However, the lack of a fully functional
immune system in these models is an obstacle in the study of the efficacy of most im-
munotherapy agents [13]. Furthermore, these models do not take into account cancer
immunoediting, thus ignoring the role of the immune tumor microenvironment for cancer
progression. Similar to traditional cell line-derived xenograft models, a more personal-
ized option is the direct transfer of tumor specimens from individual patients, so-called
patient-derived xenografts (PDXs) [14]. This model could also be engrafted with matched
patient-derived peripheral blood mononuclear cells (PBMCs), making it a suitable trans-
lational research model for evaluating the efficacy of immunotherapeutic agents. Thus,
results originating from PDX models are considered relevant for decision-making in drug
development. However, the main drawbacks of the so-called humanized mice models are
the limited source of tumor-initiating material, the long latency period for tumor develop-
ment, and the high cost [13]. Moreover, some features such as the myeloid and vascular
stromal compartments are not well reproduced. Furthermore, in addition to all the models
on tumor cell inoculation into syngeneic, immunocompetent mice (suspension, tumor
fragments, seeded 3D scaffolds, etc.), genetically engineered mouse models (GEMMs) also
constitute useful experimental tools in cancer research [15,16]. GEMMs develop de novo
tumors in a natural cancer immunoediting context. Oncogenes and tumor suppressor
genes are modified in the somatic cells of mice leading to a classification based on the
genetic intervention: Knock-out, knock-in, or transgenic mouse models [17–20]. Tumor
onset in these models is sometimes accelerated by the administration of carcinogens or
gene transfer of recombinases to activate the transforming tumorogenic and surrogate
tumor antigens [21].

Despite all these models, establishing standardized, relevant, feasible, and repro-
ducible PCa mice models remains a challenge. In general, peritoneal tumor burden or
cancer progression in PCa mouse models can be quantified by (i) bioluminescence or bioflu-
orescence: With the use of a tumor cell line engineered to express a reporter gene [22,23];
(ii) number and weight of peritoneal implants and/or omentum; iii) quantification of
tumor burden by RT-PCR, immunohistochemistry, in vivo fluorescence microscopy, and
flow cytometry, among other techniques [10,24]; (iv) ascites: Volume collected, hemorrhagic
status; (v) survival: Mouse life span is evaluated by surveillance of spontaneous death or
by euthanasia of animals with signs of pain or suffering according to established ethical
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protocol criteria [25,26]. Here, we provide a brief overview of reported mouse models to
explore PCa in translational biomedical research (Figure 1).

Figure 1. Peritoneal carcinomatosis mouse models. A repertoire of preclinical platforms to test new
therapeutic opportunities and transfer the results to patients with peritoneal carcinomatosis. CAFs,
cancer-associated fibroblasts; EP, electroporation; i.p., intraperitoneally; PBMCs, peripheral blood
mononuclear cells; PCa, peritoneal carcinomatosis; PDX, patient-derived xenograft; PLA, polylactic
acid; SB, sleeping beauty. Created with BioRender.com, accessed on 19 February 2021.

2. PCa Mouse Models
2.1. PCa Syngeneic Models

A wide repertoire of syngeneic rodent cell lines has been studied in different PCa
model research contexts. Among the most common cell lines to develop peritoneal metasta-
sis in syngeneic mouse models are MC38 and CT26 (colon adenocarcinoma cell lines from
the inbred C57BL/6 and Balb/c strains, respectively) [27–32], ID8 (an epithelial ovarian can-
cer cell line from C57BL/6) [33–36], YTN16 (a gastric cancer cell line from C57BL/6) [37,38],
and Panc02 (a pancreatic adenocarcinoma epithelial cell line from C57BL/6) [25,39–41].
Some studies have also used the melanoma cell line B16.F10 for peritoneal carcinomatosis
as an alternative albeit unreal model, in part as it offers the advantages of the implants
being highly detectable due to melanin secretion and the aggressive progression of such
tumors [42–44].

The classic PCa model consists of the inoculation of tumor cells directly into the
peritoneal cavity. Depending on the tumor cell line and the degree of aggressiveness
desired for the model (i.e., MC38: 2–5 × 105 cells, and ID8: 5–10 × 106 cells), the number
of cells is critical, as well as a broad spread of volumes where cells are suspended for
peritoneal inoculation (range from 400 to 700 µL) to disseminate cells throughout the
cavity [27–29,33]. The development of observable peritoneal implants takes time. For ID8
PCa, this occurs around day 30–40 after injection of 5 × 106 cells [10]. Several strategies
have been used to increase the aggressiveness of the respective cell lines. Overexpression
of vascular endothelial growth factor (VEGF) mediates increased tumor vascularization
and correlates with poor prognosis. The ID8 cell line engineered to overexpress VEGF
and, in some cases, the dendritic cells chemoattractant beta-defensin-29 (Defb29) has yielded
dramatic increases in peritoneal implants and has reduced survival of the animals [35,45–47]. In
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addition, the overexpression of immunosuppressive molecules such as PD-L1 can promote
PCa progression by inhibiting peritoneal cytotoxic lymphocytes [48].

Nevertheless, these kinds of peritoneal metastasis models do not reflect the biology
underlying the onset of PCa since intraperitoneal (i.p.) inoculation spreads over the entire
peritoneum. To address this, different studies have been carried out with a more realistic
but laborious and often irreproducible model. This consists of generating orthotopic
primary tumors (in the colon, ovary bursa, pancreas, etc.) and selecting cancer cells that
have migrated to the secondary peritoneal organs localized as tumor implants or to the
omentum after two or three weeks of primary tumor challenge. Then, consecutive passages
are made in mice until a highly metastatic line is achieved. Using this selected aggressive
cell line, PCa latency for experimental studies can be shortened [33,49–52]. The selection
of these clones could also be useful for models such as ID8, where the development of
peritoneal implants is very slow, even if 5 × 106 cells are inoculated into the peritoneal
cavity. By selecting the proper clone, this time can be significantly reduced to 20–30 days to
obtain peritoneal implants after i.p. challenge.

Altogether, syngeneic PCa models are feasible and convenient models to test im-
munotherapeutic agents delivered into the peritoneal cavity. A major drawback is the
significant differences between the peritoneum of rodents and humans. While the omen-
tum, a highly vascularized organ critical in the development of PCa is a large organ in
humans, it does not play the same role in mice [53] (Figure 2).

Figure 2. Anatomy and localization of human and mouse omentum. The mouse omentum is a thin,
slightly elongated, and vascularized tissue located under the stomach and between the spleen and
pancreas. Created with BioRender.com, accessed on 19 February 2021.

Despite this fact, the omentum of mice is considered an interesting organ for im-
mune studies of peritoneal carcinomatosis, especially to understand the role of resident
macrophages that promote peritoneal carcinomatosis [54–56]. However, on the whole,
syngeneic PCa models are not entirely a bona fide model for PCa in patients.

2.2. PCa Human Xenograft and PDX Models

PCa xenograft models are based on the transplantation of human cancer cells or tissue
into the peritoneal cavity of immunodeficient mice, such as athymic nude, non-obese
diabetic (NOD), severe combined immunodeficiency (SCID), or NOD SCID gamma mice
(NSG). These mice are unable to generate an immune response against human cells and
tumor engraftment is thus promoted in the peritoneal cavity. The xenografted PCa models
have been studied using colon cancer (HCT-116, LS174T, HT29, SW480, SW620, LoVo,
RKO, Caco-2, KM12, MDST8, HUTU80) [57–61], pancreatic cancer (Panc-1, TCC-Pan2,
BxPC3, AsPC-1) [62–64], gastric cancer (60As6, HSC-44PE, HSC-58, MKN45-P) [56–69],
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and ovarian cancer (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, OVSAHO, OV2944-
HM-1, SKOV-3) [59,70–72] cell lines. These models have been used to attain proofs of
concept and explore treatments that determine in vivo tumor cell cytotoxicity of drugs,
such as chemotherapeutic agents. However, the main drawback of these standard PCa
models is the lack of an immunocompetent environment [15]. In fact, xenograft models
have been controversial due to their poor accuracy in predicting clinical response. For
instance, they do not consider the effect of anti-tumor immune responses or the tumor im-
mune microenvironment (tumor-infiltrating lymphocytes, macrophages, myeloid-derived
immuno-suppressor cells, and regulatory T cells, among others) in the progression of
cancer. Therefore, the use of PCa xenograft models is not useless to test immunotherapeutic
agents but may lack an important component if adaptive immunity is involved in the
mechanism of action.

To overcome the limitations of PCa xenograft models, PCa PDX models are cur-
rently under development. PDX models are ideally suited for testing potential, promising,
and “personalized” cancer therapeutics [73]. However, although PDX models have been
well-studied in different primary tumors (e.g., melanoma, lung cancer, breast cancer), peri-
toneal carcinomatosis remains to be an unexploited personalized platform to test cancer
treatments. In line with this, Elien De Thaye and colleagues recently established and
characterized PDX from peritoneal metastasis of ovarian cancer for the first time [74]. They
used fresh peritoneal tissue specimens from 10 patients with metastatic ovarian cancer.
These tumor fragments were processed to tumor slurry and inoculated by orthotopic
engraftment i.p. into SCID/Beige mice. Then, tumors were harvested from the peritoneal
implant established in the mouse by passages until they became more prominent. Overall,
De Thaye et al. demonstrated a feasible orthotopic PDX model from a peritoneal metas-
tasis of ovarian cancer and a sophisticated translational research platform. Furthermore,
the generation of NSG mice has facilitated the co-engraftment of human hematopoietic
cells, peripheral blood mononuclear cells (PBMCs), or bone marrow precursors [75]. The
standard method to repopulate a mouse with human immune cells is to intravenously
engraft PBMCs (autologous or allogenic) in immunodeficient mice. However, in the case of
a PCa model, it would be more appropriate to isolate immune cells from peritoneum lavage
or ascites from PCa patients and co-engraft these into the peritoneum of PDX mice with
already established tumors. With this model, the local effects and activation of peritoneal
resident immune cells could be studied with immunotherapeutic agents [76].

2.3. PCa Genetically Induced Models

Genetically engineered mouse models (GEMM) (transgenic, knock-out, knock-in mice)
have been used to study peritoneal metastasis. GEMM can faithfully recapitulate some
human cancers genetically with very similar tumor microenvironment phenotype [77,78].
Some mice models expressing human tumor endogenous antigens such as carcinoembry-
onic antigen (CEA) as a transgene have shown better engraftment of mice tumor cells
expressing this antigen in particular, as is the case of the MC38-CEA adenocarcinoma cell
line [79]. However, more elaborate and realistic models which more faithfully represent
clinical peritoneal metastasis are achieved through gene modification of primary aggressive
peritoneal tumors (i.e., ovary, colon, stomach, pancreas) induced to study early peritoneal
metastasis. In line with, some studies have used triple-mutant (TKO) mice: p53LSL-R172H/+

Dicer1flox/flox Ptenflox/flox Amhr2cre/+ [80,81]. This mouse p53R172H is equivalent to human
p53R175H and is one of the most common p53 mutations in ovarian high-grade serous
carcinoma (HGSCs) [82]. In TKO mouse, the tumors begin to form in the fallopian tube
1–2 months after birth. All mice develop PCa, with severe hemorrhagic ascites, leading to
death (six months after birth).

Another recent and interesting work published by SSu-Hsueh Tseng, et al. reported
on the development of a PCa model where the histological morphology and immune
microenvironment are the same as peritoneal metastasis HGSCs in humans [83]. First, they
observed that in immunocompetent mice the combination of shRNA-p53 (p53 suppression)
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with AKT and c-Myc oncogene overexpression in the peritoneum resulted in aggressive PCa
with the presence of macroscopic peritoneal implants in only 21 days. This model consists
of integrating the combination of shRNA-p53, AKT, and c-Myc via a sleeping beauty
transposase system by i.p. administration, followed by electroporation in the abdominal
cavity. Interestingly, this suppression of p53 and overexpression of AKT and c-Myc are able
to overcome immunosurveillance and induce peritoneal tumors in immunocompetent mice
too. Similarly, Sonia Iyer and colleagues constructed cell lines combining loss of Trp53 and
overexpression of Ccne1, Akt2, and Trp53R172H, and driven by KRASG12V (KPCA) or Brd4
(BPCA) or Smarca4 (SPCA) overexpression [84]. Thus, this model represents an excellent
and reliable platform for preclinical and translational PCa research and, more interestingly,
the testing of immunotherapeutic agents. Additionally, this GEMM model can be used to
investigate the initiation and progression of PCa, to identify potential biomarkers, and to
predict the origin of peritoneal cancer spreading.

2.4. 3D-Biomimetics Peritoneal Implants

Advances in biotechnology and tissue engineering are increasingly being used in
cancer research, as in other medical fields. One of these is the use of scaffolds as tools
to test drugs or tumor implants with a structure that resembles the natural tumor [85].
Several studies have used these scaffolds to make an ex vivo tumor recapitulating the com-
plexity of the tumor microenvironment. This has been achieved by including cancer cells,
immune cells, fibroblasts, growth factors, and stromal components [86–88]. In PCa, this
methodology has been used for the development of high-complexity bona fide peritoneal
implants, although it is debatable whether this should be defined as an in vivo model per
se. Therefore, this preclinical approach mimics the complexity (truly reflect in 3D models)
of tumors developed in the peritoneum that may lead to potential therapies to improve the
current PCa treatment options.

Accordingly, some groups are working on these 3D biomimetic peritoneal tumors.
Daniela Loessner and colleagues observed that kallikrein-related peptidase 4, 5, 6, and
7 (KLK4-7) overexpression in ovarian cancer cells spheroids with integrin activation pro-
duces PCa after nine weeks of the inoculation in the peritoneal cavity in mice [88]. Moreover,
in 2019, the same group recreated ex vivo ovarian tumor peritoneal metastasis. They used
“3D co-cultured” hydrogel-encapsulated ovarian cancer cells with mesothelial cell-layered
melt electrospun written scaffolds. These ex vivo tumor implants engrafted well and
mimicked the same progression, invasion, and microenvironment as peritoneal implants
of natural origin in mice [87].

Peritoneal implants present a complex structure, and the challenge of 3D culture is to
mimic these ex vivo as realistically as possible so as to improve engraftment and the clinical
biology in animal models. In order to achieve this, Emiel De Jaeghere et al. took into
account the heterocellularity of 3D scaffolds in order to generate scaffolds which could then
be implanted in the peritoneal cavity more successfully [86]. For that purpose, this group
used polylactic acid (PLA) scaffolds with collagen type I hydrogel, co-seeding SKOV-3
cells (ovarian cancer), and cancer-associated fibroblasts (CAFs) not only to enhance the
paracrine factor to improve spheroid formation in vitro, but also to enhance cancer cell
survival, and angiogenesis. This model also seeks to improve the cellular composition and
architecture of the tumor microenvironment and the organization of host cells in vivo. In
fact, it was observed that CAFs, endothelial cells, macrophages, and cancer cells showed
similar features when compared with patient-derived peritoneal metastasis. The authors
concluded that this scaffold model represents a promising platform for the preclinical
study of drug penetration and efficacy following delivery of intraperitoneal chemotherapy,
among other therapeutic agents [86].

3. Concluding Remarks

Overall, PCa models have both advantages and drawbacks (Figure 3). Therefore, the
read-out of the results obtained in mice should always be interpreted with caution. The
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complexity of cancer development and all the biological factors involved make it even
more difficult to construct an ideal preclinical syngeneic model. Even PDX models have
sometimes been shown not to correlate with the therapeutic outcome observed in the same
patient from whom the model was derived.

Figure 3. Benefits and limitations of PCa mouse models. Assessment of the current platforms for
preclinical development of anticancer drugs or immunotherapeutic agents in PCa. Relative scores
are represented as being suitable (green checkmark), partially suitable (yellow checkmark), and not
suitable (red cross). Created with BioRender.com, accessed on 19 February 2021.

In general terms, the human peritoneum environment where PCa develops is highly
dynamic and is, at least currently, unmatched in mice with the same tissue structure
and biology. However, syngeneic, humanized, personalized PDX, GEMM models, or
approaches using biotechnology for 3D tumors have offered proofs of concept enabling the
preclinical study of promising therapeutic alternatives in patients with PCa. Unfortunately,
the currently dismal survival figures for PCa will only become worse in the following years
due to the collateral COVID-19 impact associated with the cancellation of multiple routine
medical exams to detect early gastrointestinal or gynecologic primary tumors. For this
reason, exploring new PCa animal models as a platform to test, improve and/or predict
the appropriate therapeutic interventions in patients should be a cancer research priority
in the coming years.
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