6,299 research outputs found
Towards a Shared Control Navigation Function:Efficiency Based Command Modulation
This paper presents a novel shared control algorithm for robotized
wheelchairs. The proposed algorithm is a new method to extend
autonomous navigation techniques into the shared control domain. It reactively
combines user’s and robot’s commands into a continuous function
that approximates a classic Navigation Function (NF) by weighting input
commands with NF constraints. Our approach overcomes the main drawbacks
of NFs -calculus complexity and limitations on environment
modeling- so it can be used in dynamic unstructured environments. It also
benefits from NF properties: convergence to destination, smooth paths
and safe navigation. Due to the user’s contribution to control, our function
is not strictly a NF, so we call it a pseudo-navigation function (PNF)
instead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters
In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s2) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory
Design and implementation of a fair credit-based bandwidth sharing scheme for buses
Fair arbitration in the access to hardware shared resources is fundamental to obtain low worst-case execution time (WCET) estimates in the context of critical real-time systems, for which performance guarantees are essential. Several hardware mechanisms exist for managing arbitration in those resources (buses, memory controllers, etc.). They typically attain fairness in terms of the number of slots each contender (e.g., core) gets granted access to the shared resource. However, those policies may lead to unfair bandwidth allocations for workloads with contenders issuing short requests and contenders issuing long requests. We propose a Credit-Based Arbitration (CBA) mechanism that achieves fairness in the cycles each core is granted access to the resource rather than in the number of granted slots. Furthermore, we implement CBA as part of a LEON3 4-core processor for the Space domain in an FPGA proving the feasibility and good performance characteristics of the design by comparing it against other arbitration schemes.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundaci´on la Caixa under grant
Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant
TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
Determinants of bank efficiency: evidence from the Latin American banking industry
Purpose: The purpose of this paper is to analyze a variety of factors that can explain the differences in commercial bank efficiency among 17 countries in Latin America (LatAm). Design/methodology/approach: In a first stage, data envelopment analysis (DEA) and conditional efficiency analysis techniques are used to assess the relative efficiency level of 409 banks for the 2014-2016 period. The conditional efficiency approach considers environmental variables (that are beyond the manager’s control), which could influence the shape and the level of the boundary of the attainable set. In the second stage, the resulting conditional efficiency scores are correlated with internal variables (those that are under the manager’s control), which might affect the distribution of the inefficiencies. For this purpose, an econometric approach developed by Simar and Wilson (2007) is used. Findings: First stage scores reveal the heterogeneity of average efficiency within the region. Regarding the factors that may explain the differences in performance in the LatAm banking sector, the results allow us to state that certain internal variables such as bank size, the ratio of loans to total assets and the ratio of non-performing loans show the expected relationship to efficiency, in line with much of the previous literature. Originality/value: This is the first time that conditional efficiency and Simar and Wilson (2007) approaches have been applied at the same time to analyse the LatAm banking industry.Fil: Jiménez Hernandez, Ignacio. Universidad de Granada; EspañaFil: Palazzo, Gabriel Martín. Centro de Estudios de Estado y Sociedad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sáez Fernández, Francisco Javier. Universidad de Granada; Españ
Sampling associated with resolvent-type kernels and lagrange-type interpolation series
In this paper a new class of Kramer kernels is introduced, motivated by the resolvent of a symmetric operator with compact resolvent. The article gives a necessary and sufficient condition to ensure that the associ- ated sampling formula can be expressed as a Lagrange-type interpolation series. Finally, an illustrative example, taken from the Hamburger moment problem theory, is included
The role of the cytoskeleton in volume regulation and beading transitions in PC12 neurites
We present investigations on volume regulation and beading shape transitions
in PC12 neurites conducted using a flow-chamber technique. By disrupting the
cell cytoskeleton with specific drugs we investigate the role of its individual
components in the volume regulation response. We find that microtubule
disruption increases both swelling rate and maximum volume attained, but does
not affect the ability of the neurite to recover its initial volume. In
addition, investigation of axonal beading --also known as pearling
instability-- provides additional clues on the mechanical state of the neurite.
We conclude that the initial swelling phase is mechanically slowed down by
microtubules, while the volume recovery is driven by passive diffusion of
osmolites. Our experiments provide a framework to investigate the role of
cytoskeletal mechanics in volume homeostasis
Temperature and particle concentration influence on the complex viscous behavior of a hydrophilic fumed silica suspension
Shear-thinning behavior (decrease of the apparent steady viscosity with shear) due to breaking of weak particle flocs and posterior alignment of individual particles in layers parallel to the flow direction is usually observed before the appearance of the shear-thickening behavior (increase of the apparent steady viscosity with shear). The shear-thickening behavior is mainly due to the dominant role played by hydrodynamic over Brownian and colloidal forces at relatively high shear. As a rule, the onset of shear-thickening behavior and the maximum viscosity value appear at lower shear rates when solid concentration increases, and temperature decreases. However, the influence of solid concentration and temperature on shear stress characteristic values have received less attention despite being the shear stress the true cause of microstructure changes that can provoke the appearance of the shear-thickening behaviour. A recently published empirical equation for the shear stress dependence of the steady viscosity of shear thickening fluids [T. Shende, V.J. Niasar, M. Babaei, J. Mol. Liq. 325 (2021) 115220] has been used for fitting experimental data (MARSIII, Thermo-Haake, Germany) of a hydrophilic fumed silica suspension (A200 (Evonik, Germany) in PPG400 (Sigma-Aldrich, Germany)). The influence of temperature (10,\ 30,\ 50,\ 70\degc) and solid concentration (10,\ 15,\ 20,\ 25%\ wt) on the shear-thickening behavior has been monitored recording their influence on the model parameters.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Coherent exciton-vibrational dynamics and energy transfer in conjugated organics
Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble of trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.Fil: Nelson, Tammie R.. Los Alamos National Laboratory; Estados UnidosFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Galindo, Johan F.. Universidad Nacional de Colombia; ColombiaFil: Kleiman, Valeria D.. University of Florida; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unido
Effective current-driven memory operations for low-power ReRAM applications
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Al document ha d’aparèixer l’enllaç a la publicació original a IEEE, o bé al Digital Object Identifier (DOI).Resistive switching (RS) devices are electronic components which exhibit a resistive state that can be adjusted to different nonvolatile levels via electrical stressing, fueling the development of future resistive memories (ReRAM) and enabling innovative solutions for several applications. Most works so far have used voltage-based driving schemes for both WRITE and READ operations. However, results from current-driven WRITE operations have shown high uniformity in switching performance, and thus constitute a valid alternative to consider, but current-driven READ operations have rarely been explored. In this context, here we tested a current-based READ/WRITE memory driving scheme on commercial self-directed channel (SDC) devices, while operating constantly at low current levels between tenths of nA and 1.5 uA. We propose a novel method to carry out efficient READ operations exploiting the transient response of the voltage on the current-driven ReRAM memory cells. For READ operations performed at 100 nA, we calculated the cumulative probability distribution of the standard deviation of the measured voltage ( σV ) on the devices and we observed a ratio σV−HRS/σV−LRS∼10× . Moreover, the HRS and LRS states were distinguishable in all the tested devices with less than 0.5% error. Finally, the calculated energy consumption ( ESET≈10 nJ, ERESET≈30 nJ, and EREAD between 80–400 pJ) was competitive even when the duration of the READ/WRITE current pulses was suboptimal in the millisecond range. Therefore, the presented results validate the promising characteristics and the power-efficiency of the proposed READ method for current-driven ReRAM circuits and applications.This work was supported in part by the Chilean Government through the National Fund for Scientific and Technological Development
(FONDECYT) under Grant 1221747; in part by the National Agency for Research and Development (ANID)-Basal under Grant FB0008;
in part by the MICINN, Spain, through PRITES Project under Grant PID2019-105658RB-I00; and in part by FLEXRRAM Project under
Grant TED2021-129643B-I00.Peer ReviewedPostprint (published version
Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II
In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate
- …