37 research outputs found

    Isolation and identification of minor secoiridoids and phenolic components from thermally treated olive oil by-products

    Get PDF
    Documento descargado de https://digital.csic.es/handle/10261/129335The application of an industrial process based on the hydrothermal treatment of 160 °C/60 min of alperujo, a by-product of olive oil extraction, allows the formation of a liquid phase containing a high concentration of phenolic and secoiridoid compounds. Ethyl acetate was used to extract these phenolic compounds from the aqueous matrix. In this study, the isolation with polyamide and XAD resin allowed detection of the presence of phenolic compounds in minor concentrations. These minor phenols were several oleuropein derivatives that had not been identified in these phenolic extracts previously. The polar compounds, acteosides, secoiridoids, and flavonoids, that remain in the aqueous fraction after extraction with ethyl acetate were identified. We report the presence of known compounds and also detected a novel molecule in alperujo with a molecular weight of 408 whose structure was characterized for first time. This new secoiridoid glucoside was identified as 1-β-D-glucopyranosyl acyclodihydroelenolic acid.Spanish Ministry of Economy and Competitiveness AGL2013-48291-REuropean Social Fund (ESF) AGL2013-48291-

    Design and Synthesis of CNS-targeted Flavones and Analogues with Neuroprotective Potential Against H2O2- and Aβ1-42-Induced Toxicity in SH-SY5Y Human Neuroblastoma Cells

    Get PDF
    With the lack of available drugs able to prevent the progression of Alzheimer’s disease (AD), the discovery of new neuroprotective treatments able to rescue neurons from cell injury is presently a matter of extreme importance and urgency. Here, we were inspired by the widely reported potential of natural flavonoids to build a library of novel flavones, chromen-4-ones and their C-glucosyl derivatives, and to explore their ability as neuroprotective agents with suitable pharmacokinetic profiles. All compounds were firstly evaluated in a parallel artificial membrane permeability assay (PAMPA) to assess their effective permeability across biological membranes, namely the blood-brain barrier (BBB). With this test, we aimed not only at assessing if our candidates would be well-distributed, but also at rationalizing the influence of the sugar moiety on the physicochemical properties. To complement our analysis, logD7.4 was determined. From all screened compounds, the p-morpholinyl flavones stood out for their ability to fully rescue SH-SY5Y human neuroblastoma cells against both H2O2- and Aβ1-42-induced cell death. Cholinesterase inhibition was also evaluated, and modest inhibitory activities were found. This work highlights the potential of C-glucosylflavones as neuroprotective agents, and presents the p-morpholinyl C-glucosylflavone 37, which did not show any cytotoxicity towards HepG2 and Caco-2 cells at 100 μM, as a new lead structure for further development against AD.Fundação para a Ciência e a Tecnologia-UID/Multi/0612/2019Unión Europea-D3i4AD), FP7-PEOPLE-2013-IAPP, GA 61234

    Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids—A Biological Assessment

    Get PDF
    Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharma-cophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure–activity relationships for the biological as-says accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocar-bamates 24–27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).Ministerio de Ciencia e Innovación PID2020-116460RB-I00Junta de Andalucía FQM134Gobierno de las Islas Canarias ProID202001010

    Identification of an acetyl esterase in the supernatant of the environmental strain Bacillus sp. HR21-6

    Get PDF
    Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.Junta de Andalucía P11-CVI-7427 M

    A gliclazide complex based on palladium towards Alzheimer's disease: promising protective activity against Aβ-induced toxicity in C. elegans

    Get PDF
    A new palladium coordination compound based on gliclazide with the chemical formula [Pd(glz)2] (where glz = gliclazide) has been synthesized and characterised. The structural characterization reveals that this material consists of mononuclear units formed by a Pd2+ ion coordinated to two molecules of the glz ligand, in which palladium ions exhibit a distorted plane-square coordination sphere. This novel material behaves like a good and selective inhibitor of butyrylcholinesterase, one of the most relevant therapeutic targets against Alzheimer’s disease. Analysis of the enzyme kinetics showed a mixed mode of inhibition, the title compound being capable of interacting with both the free enzyme and the enzyme–substrate complex. Finally, the palladium compound shows promising protective activity against Ab-induced toxicity in the Caenorhabditis elegans model, which has never been reported

    2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases

    Get PDF
    We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.España MICINN (PID2020-116460RB-I00, PGC2018- 094503-B-C22)Junta de Andalucía (FQM134)Gobierno de Canarias ProID202001010

    Osteoarthritis treatment with a novel nutraceutical acetylated ligstroside aglycone, a chemically modified extra-virgin olive oil polyphenol

    Get PDF
    Recent studies have shown that dietary patterns confer protection from certain chronic diseases related to oxidative stress, the immune system and chronic low-grade inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory potential and the capacity to attenuate cartilage degradation using extra-virgin olive oil–derived polyphenols for the treatment of osteoarthritis. Results show that both nutraceuticals ligstroside aglycone and acetylated ligstroside aglycone showed an anti-inflammatory profile. Acetylated ligstroside aglycone significantly reduced the expression of pro-inflammatory genes including NOS2 and MMP13 at both RNA and protein levels; decreased nitric oxide release; and, importantly, reduced proteoglycan loss in human osteoarthritis cartilage explants. Our study demonstrated that a new synthetic acetylated ligstroside aglycone derivative offers enhanced anti-inflammatory profile than the natural nutraceutical compound in osteoarthritis. These results substantiate the role of nutraceuticals in osteoarthritis with implications for therapeutic intervention and our understanding of osteoarthritis pathophysiology.España, MINECO (CTQ2016-78703-P)España, Junta de Andalucía (FQM134

    A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria

    Get PDF
    The chemical synthesis of new lipophilic polyphenols with improved properties presents technical difficulties. Here we describe the selection, isolation and identification of lipolytic bacteria from food-processing industrial wastes, and their use for tailoring a new set of com- pounds with great interest in the food industry. These bacteria were employed to produce lipolytic supernatants, which were applied without further purification as biocatalysts in the chemoselective and regioselective synthesis of lipophilic partially acetylated phenolic com- pounds derived from olive polyphenols. The chemoselectivity of polyphenols acylation/dea- cylation was analyzed, revealing the preference of the lipases for phenolic hydroxyl groups and phenolic esters. In addition, the alcoholysis of peracetylated 3,4-dihydroxyphenylglycol resulted in a series of lipophilic 2-alkoxy-2-(3,4-dihydroxyphenyl)ethyl acetate through an unexpected lipase-mediated etherification at the benzylic position. These new compounds are more lipophilic and retained their antioxidant properties. This approach can provide access to unprecedented derivatives of 3,4-dihydroxyphenylglycol with improved propertiesJunta de Andalucía P08-NMR-3515, P11-CVI-7427 MO, FQM134 y BIO-213European Regional Development Fund (FEDER

    Masked Phenolic-Selenium Conjugates: Potent and Selective Antiproliferative Agents Overcoming P-gp Resistance

    Get PDF
    Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88-2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14-32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents

    Synthesis and Antiproliferative Activity of Sulfa-Michael Adducts and Thiochromenes Derived from Carbohydrates

    Get PDF
    The Michael addition reactions of carbohydrate-derived nitroalkenes with ethyl thioglycolate and 2-mercaptobenzyl alcohol were studied. Reactions were conducted under mild, solvent-free conditions with DABCO as a catalyst, affording the corresponding adducts in good yields. Furthermore, compounds resulting from the addition with 2-mercaptobenzyl alcohol were used as starting materials for the synthesis of chiral 3-nitro-2H-thiochromenes. For some of the compounds synthesized herein, the antioxidant and antiproliferative activities against a panel of human solid tumor cell lines were assayed and compared with those of carbohydrate-nitroalkene substrates.Junta de Extremadura GR15022Unión Europea FP7-REGPOT-2012-CT2012-31637-IMBRAI
    corecore