97 research outputs found
Optimal sensor placement for classifier-based leak localization in drinking water networks
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a sensor placement method for classifier-based leak localization in Water Distribution Networks. The proposed approach consists in applying a Genetic Algorithm to decide the sensors to be used by a classifier (based on the k-Nearest Neighbor approach). The sensors are placed in an optimal way maximizing the accuracy of the leak localization. The results are illustrated by means of the application to the Hanoi District Metered Area and they are compared to the ones obtained by the Exhaustive Search Algorithm. A comparison with the results of a previous optimal sensor placement method is provided as well.Postprint (author's final draft
Pumps condition assessment in water distribution networks
Postprint (published version
Leak localization in water distribution networks using a mixed model-based/data-driven approach
“The final publication is available at Springer via http://dx.doi.org/10.1016/j.conengprac.2016.07.006”This paper proposes a new method for leak localization in water distribution networks (WDNs). In a first stage, residuals are obtained by comparing pressure measurements with the estimations provided by a WDN model. In a second stage, a classifier is applied to the residuals with the aim of determining the leak location. The classifier is trained with data generated by simulation of the WDN under different leak scenarios and uncertainty conditions. The proposed method is tested both by using synthetic and experimental data with real WDNs of different sizes. The comparison with the current existing approaches shows a performance improvement.Peer ReviewedPostprint (author's final draft
Set-membership identification and fault detection using a Bayesian framework
This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from the Bayesian viewpoint in order to, first, determine the feasible parameter set in the identification stage and, second, check the consistency between the measurement data and the model in the fault-detection stage. The paper shows that, assuming uniform distributed measurement noise and uniform model prior probability distributions, the Bayesian approach leads to the same feasible parameter set than the well-known set-membership technique based on approximating the feasible parameter set using sets. Additionally, it can deal with models that are nonlinear in the parameters. The single-output and multiple-output cases are addressed as well. The procedure and results are illustrated by means of the application to a quadruple-tank process.Peer ReviewedPostprint (author's final draft
Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach
In this paper, the problem of robust fault diagnosis of proton exchange membrane (PEM) fuel cells is addressed by introducing the Takagi-Sugeno (TS) interval observers that consider uncertainty in a bounded context, adapting TS observers to the so-called interval approach. Design conditions for the TS interval observer based on regional pole placement are also introduced to guarantee the fault detection and isolation (FDI) performance. The fault detection test is based on checking the consistency between the measurements and the output estimations provided by the TS observers. In presence of bounded uncertainty, this check relies on determining if all the measurements lie inside their corresponding estimated interval bounds. When a fault is detected, the measurements that are inconsistent with their corresponding estimations are annotated and a fault isolation procedure is triggered. By using the theoretical fault signature matrix (FSM), which summarizes the effects of the different faults on the available residuals, the fault is isolated by means of a logic reasoning that takes into account the bounded uncertainty, and if the number of candidate faults is more than one, a correlation analysis is used to obtain the most likely fault candidate. Finally, the proposed approach is tested using a PEM fuel cell case study proposed in the literature.Peer ReviewedPostprint (author's final draft
Data-driven approach for leak localization in water distribution networks using pressure sensors and spatial interpolation
This paper presents a new data-driven method for leak localization in water distribution networks. The proposed method relies on the use of available pressure measurements in some selected internal network nodes and on the estimation of the pressure at the remaining nodes using Kriging spatial interpolation. Online leak localization is attained by comparing current pressure values with their reference values. Supported by Kriging; this comparison can be performed for all the network nodes, not only for those equipped with pressure sensors. On the one hand, reference pressure values in all nodes are obtained by applying Kriging to measurement data previously recorded under network operation without leaks. On the other hand, current pressure values at all nodes are obtained by applying Kriging to the current measured pressure values. The node that presents the maximum difference (residual) between current and reference pressure values is proposed as a leaky node
candidate. Thereafter, a time horizon computation based on Bayesian reasoning is applied to consider the residual time evolution, resulting in an improved leak localization accuracy. As a data-driven approach, the proposed method does not need a hydraulic model; only historical data from normal operation is required. This is an advantage with respect to most data-driven methods that need historical data for the considered leak scenarios. Since, in practice, the obtained leak localization results will strongly depend on the number of available pressure measurements and their location, an optimal sensor placement procedure is also proposed in the paper. Three different case studies illustrate the performance of the proposed methodologies.Peer ReviewedPostprint (author's final draft
Leak localization in water distribution networks using model-based bayesian reasoning
This paper presents a new method for leak localization in Water Distribution Networks that uses a model-based approach combined with Bayesian reasoning. Probability density functions in model-based pressure residuals are calibrated off-line for all the possible leak scenarios by using a hydraulic simulator, being leak size uncertainty, demand uncertainty and sensor noise considered. A Bayesian reasoning is applied online to the available residuals to determine the location of leaks present in the Water Distribution Network. A time horizon method combined with the Bayesian reasoning is also proposed to improve the accuracy of the leak localization method. The Hanoi District Metered Area case study is used to illustrate the performance of the proposed approach.Peer ReviewedPostprint (author's final draft
Leak localization in water distribution networks using Bayesian classifiers
This paper presents a method for leak localization in water distribution networks (WDNs) based on Bayesian classifiers. Probability density functions for pressure residuals are calibrated off-line for all the possible leak scenarios by using a hydraulic simulator, and considering the leak size uncertainty, demand uncertainty and sensor noise. A Bayesian classifier is applied on-line to the computed residuals to determine the location of leaks in the WDN. A time horizon based reasoning combined with the Bayesian classifier is also proposed to improve the localization accuracy. Two case studies based on the Hanoi and the Nova Icària networks are used to illustrate the performance of the proposed approach. Simulation results are presented for the Hanoi case study, whereas results for a real leak scenario are shown for the Nova Icària case study.Peer ReviewedPostprint (author's final draft
Sensor placement for classifier-based leak localization in water distribution networks using hybrid feature selection
This paper presents a sensor placement approach for classifier-based leak localization in water distribution networks. The proposed method is based on a hybrid feature selection algorithm that combines the use of a filter based on relevancy and redundancy with a wrapper based on genetic algorithms. This algorithm is applied to data generated by hydraulic simulation of the considered water distribution network and it determines the optimal location of a prespecified number of pressure sensors to be used by a leak localization method based on pressure models and classifiers proposed in previous works by the authors. The method is applied to a small-size simplified network (Hanoi) to better analyze its computational performance and to a medium-size network (Limassol) to demonstrate its applicability to larger real-size networks.Peer ReviewedPostprint (author's final draft
- …