9 research outputs found

    EIFIS: a modular extreme integral field spectrograph for the 10.4m GTC

    Full text link
    EIFIS (Extreme Integral FIeld Spectrograph) is a modular integral field spectrograph, based on image slicers, and makes use of new, large format detectors. The concept is thought to cover the largest possible field of view while producing spectroscopy over the complete optical range (3 000 - 10 000 \r{A}) at a medium resolving power of about 2400. In the optimal concept, each module covers a field of view of 38" x 38" with 0.3" spaxels, which is fed into a double spectrograph with common collimator optics. The blue arm covers the spectral range between 3000 and 5600 \r{A} and the red arm between 5400 and 10100 \r{A}, allowing for an overlap range. The spectra are imaged onto 9.2k x 9.2k detectors using a double pseudoslit. The proposed design for the 10.4m Gran Telescopio Canarias uses a total of 6 such modules to cover a total of 2.43 square arcminutes. Here we will present the conceptual design of the instrument and a feasibility study of the optical and mechanical design of the spectrographs. We discuss the limitations and alternative designs and its potential to produce leading edge science in the era of extremely large telescopes and the James Webb Space Telescope.Comment: Submitted to the Proceedings of the SPIE, Astronomical Telescopes and Instrumentatio

    GRB 221009A, The BOAT

    Full text link
    GRB 221009A has been referred to as the Brightest Of All Time (the BOAT). We investigate the veracity of this statement by comparing it with a half century of prompt gamma-ray burst observations. This burst is the brightest ever detected by the measures of peak flux and fluence. Unexpectedly, GRB 221009A has the highest isotropic-equivalent total energy ever identified, while the peak luminosity is at the 99\sim99th percentile of the known distribution. We explore how such a burst can be powered and discuss potential implications for ultra-long and high-redshift gamma-ray bursts. By geometric extrapolation of the total fluence and peak flux distributions GRB 221009A appears to be a once in 10,000 year event. Thus, while it almost certainly not the BOAT over all of cosmic history, it may be the brightest gamma-ray burst since human civilization began.Comment: Resubmitted to ApJ

    EIFIS: a modular extreme integral field spectrograph for the 10.4m GTC

    No full text
    International audienceEIFIS (Extreme Integral FIeld Spectrograph) is a modular integral field spectrograph, based on image slicers, and makes use of new, large format detectors. The concept is thought to cover the largest possible field of view while producing spectroscopy over the complete optical range (3 000 - 10 000 Å) at a medium resolving power of about 2400. In the optimal concept, each module covers a field of view of 38" x 38" with 0.3" spaxels, which is fed into a double spectrograph with common collimator optics. The blue arm covers the spectral range between 3000 and 5600 Å and the red arm between 5400 and 10100 Å, allowing for an overlap range. The spectra are imaged onto 9.2k x 9.2k detectors using a double pseudoslit. The proposed design for the 10.4m Gran Telescopio Canarias uses a total of 6 such modules to cover a total of 2.43 square arcminutes. Here we will present the conceptual design of the instrument and a feasibility study of the optical and mechanical design of the spectrographs. We discuss the limitations and alternative designs and its potential to produce leading edge science in the era of extremely large telescopes and the James Webb Space Telescope

    GRB 221009A, The BOAT

    Get PDF
    International audienceGRB 221009A has been referred to as the Brightest Of All Time (the BOAT). We investigate the veracity of this statement by comparing it with a half century of prompt gamma-ray burst observations. This burst is the brightest ever detected by the measures of peak flux and fluence. Unexpectedly, GRB 221009A has the highest isotropic-equivalent total energy ever identified, while the peak luminosity is at the 99\sim99th percentile of the known distribution. We explore how such a burst can be powered and discuss potential implications for ultra-long and high-redshift gamma-ray bursts. By geometric extrapolation of the total fluence and peak flux distributions GRB 221009A appears to be a once in 10,000 year event. Thus, while it almost certainly not the BOAT over all of cosmic history, it may be the brightest gamma-ray burst since human civilization began

    Optical and Near-infrared Observations of the Distant but Bright 'New Year's Burst' GRB 220101A

    No full text
    International audienceHigh-redshift gamma-ray bursts (GRBs) provide a powerful tool to probe the early universe, but still for relatively few do we have good observations of the afterglow. We here report the optical and near-infrared observations of the afterglow of a relatively high-redshift event, GRB 220101A, triggered on New Year's Day of 2022. With the optical spectra obtained at XL2.16/BFOSC and NOT/ALFOSC, we determine the redshift of the burst at z=4.615z= 4.615. Based on our optical and near-infrared data, combined with the X-ray data, we perform multiband fit with the python package \emph{afterglowpy}. A jet-break at \sim 0.7 day post-burst is found to constrain the opening angle of the jet as \sim 3.4 degree. We also determine circumburst density of n0=0.15 cm3n_0 = 0.15\ {\rm cm}^{-3} as well as kinetic energy EK,iso=3.52×1054E_{\rm K, iso} = 3.52\times 10^{54} erg. The optical afterglow is among the most luminous ever detected. We also find a ``mirror'' feature in the lightcurve during the prompt phase of the burst from 80 s to 120 s. The physical origin of such mirror feature is unclear

    A kilonova following a long-duration gamma-ray burst at 350 Mpc

    No full text
    Here, we report the discovery of a kilonova associated with the nearby (350 Mpc) minute-duration GRB 211211A. In tandem with deep optical limits that rule out the presence of an accompanying supernova to MI>13M_I > -13 mag at 17.7 days post-burst, the identification of a kilonova confirms that this burst's progenitor was a compact object merger. While the spectrally softer tail in GRB 211211A's gamma-ray light curve is reminiscent of previous extended emission short GRBs (EE-SGRBs), its prompt, bright spikes last 12\gtrsim 12 s, separating it from past EE-SGRBs. GRB 211211A's kilonova has a similar luminosity, duration and color to AT2017gfo, the kilonova found in association with the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817. We find that the merger ejected 0.04M\approx 0.04 M_{\odot} of r-process-rich material, and is consistent with the merger of two neutron stars (NSs) with masses close to the canonical 1.4M1.4 M_{\odot}. This discovery implies that GRBs with long, complex light curves can be spawned from compact object merger events and that a population of kilonovae following GRBs with durations 2\gg 2 s should be accounted for in calculations of the NS merger r-process contribution and rate. At 350 Mpc, the current network of GW interferometers at design sensitivity would have detected the merger precipitating GRB 211211A, had it been operating at the time of the event. Further searches for GW signals coincident with long GRBs are therefore a promising route for future multi-messenger astronomy.Comment: Submitted. 69 pages, 11 figures, 3 table

    A very luminous jet from the disruption of a star by a massive black hole

    No full text
    Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2–9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron ‘afterglow’, probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of 0.02−0.01+0.04 per gigapascals cubed per year for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs

    A very luminous jet from the disruption of a star by a massive black hole

    No full text
    International audienceTidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jetted TDE to date is Swift J1644+57, which was discovered in gamma-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical discovery of AT2022cmc, a rapidly fading source at cosmological distance (redshift z=1.19325) whose unique lightcurve transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-rays, sub-millimeter, and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron "afterglow", likely launched by a SMBH with spin a0.3a \gtrsim 0.3. Using 4 years of Zwicky Transient Facility (ZTF) survey data, we calculate a rate of 0.020.01+0.040.02 ^{+ 0.04 }_{- 0.01 } Gpc3^{-3} yr1^{-1} for on-axis jetted TDEs based on the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations. Correcting for the beaming angle effects, this rate confirms that about 1% of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs
    corecore