2,732 research outputs found

    Practices in handling and storing commercially frozen food in Ohio households

    Get PDF

    Problems associated with purchase and use of frozen foods

    Get PDF

    Qudit Colour Codes and Gauge Colour Codes in All Spatial Dimensions

    Get PDF
    Two-level quantum systems, qubits, are not the only basis for quantum computation. Advantages exist in using qudits, d-level quantum systems, as the basic carrier of quantum information. We show that color codes, a class of topological quantum codes with remarkable transversality properties, can be generalized to the qudit paradigm. In recent developments it was found that in three spatial dimensions a qubit color code can support a transversal non-Clifford gate, and that in higher spatial dimensions additional non-Clifford gates can be found, saturating Bravyi and K\"onig's bound [Phys. Rev. Lett. 110, 170503 (2013)]. Furthermore, by using gauge fixing techniques, an effective set of Clifford gates can be achieved, removing the need for state distillation. We show that the qudit color code can support the qudit analogues of these gates, and show that in higher spatial dimensions a color code can support a phase gate from higher levels of the Clifford hierarchy which can be proven to saturate Bravyi and K\"onig's bound in all but a finite number of special cases. The methodology used is a generalisation of Bravyi and Haah's method of triorthogonal matrices [Phys. Rev. A 86 052329 (2012)], which may be of independent interest. For completeness, we show explicitly that the qudit color codes generalize to gauge color codes, and share the many of the favorable properties of their qubit counterparts.Comment: Authors' final cop

    Household management of young families: the birth of the first child

    Get PDF

    Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.The detection sensitivity of silver nanoparticle (AgNP)-tagged goat immunoglobulin G (gIgG) microarrays was investigated by studying surface plasmon resonance (SPR) images captured in the visible wavelength range with the help of a Kretchmann-configured optical coupling set-up. The functionalization of anti-gIgG molecules on the AgNP surface was studied using transmission electron microscopy, photon correlation measurements and UV–visible absorption spectroscopy. A value of 1.3 × 107 M−1 was obtained for the antibody–antigen binding constant by monitoring the binding events at a particular resonance wavelength. The detection limit of this SPR imaging instrument is 6.66 nM of gIgG achieved through signal enhancement by a factor of larger than 4 owing to nanoparticle tagging with the antibody.The European Commissio

    Photovoltaic cells energy performance enhancement with down-converting photoluminescence phosphors

    Get PDF
    Phosphors, synthesized by the urea homo-precipitation method, were examined as ultraviolet-spectral down conversion materials for improving the light absorption and electrical characteristics of commercial single-junction silicon solar cells. The photovoltaic (PV) cells were coated with erbium and terbium doped gadolinium oxysulfide phosphors encapsulated in ethyl vinyl-acetate binder using blade screen printing technique, and the optimum concentration of phosphor in the composite resulted in the largest light conversion, and superior electrical output and energy transfer efficiency. Moreover, the results demonstrated that the composition of dispersed phosphors has a strong influence on the amount of ultraviolet-light converted and electron transition capacity of PV cells. The experimental results showed in an optimized PV cell, an enhancement of 0.54% (from 12.11% to 12.65%) in the energy conversion of a Si-based PV cell was achieved.Mr. Ben Parker of LOT-QuantumDesig

    Classes of behavior of small-world networks

    Full text link
    Small-world networks are the focus of recent interest because they appear to circumvent many of the limitations of either random networks or regular lattices as frameworks for the study of interaction networks of complex systems. Here, we report an empirical study of the statistical properties of a variety of diverse real-world networks. We present evidence of the occurrence of three classes of small-world networks: (a) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (b) broad-scale networks, characterized by a connectivity distribution that has a power-law regime followed by a sharp cut-off; (c) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. Moreover, we note for the classes of broad-scale and single-scale networks that there are constraints limiting the addition of new links. Our results suggest that the nature of such constraints may be the controlling factor for the emergence of different classes of networks
    • …
    corecore