11 research outputs found
A frailty index based on deficit accumulation quantifies mortality risk in humans and in mice
Although many common diseases occur mostly in old age, the impact of ageing itself on disease risk and expression often goes unevaluated. To consider the impact of ageing requires some useful means of measuring variability in health in animals of the same age. In humans, this variability has been quantified by counting age-related health deficits in a frailty index. Here we show the results of extending that approach to mice. Across the life course, many important features of deficit accumulation are present in both species. These include gradual rates of deficit accumulation (slope = 0.029 in humans; 0.036 in mice), a submaximal limit (0.54 in humans; 0.44 in mice), and a strong relationship to mortality (1.05 [1.04-1.05] in humans; 1.15 [1.12-1.18] in mice). Quantifying deficit accumulation in individual mice provides a powerful new tool that can facilitate translation of research on ageing, including in relation to disease.K. Rockwood, J. M. Blodgett, O. Theou, M. H. Sun, H. A. Feridooni, A. Mitnitski, R. A. Rose, J. Godin, E. Gregson and S. E. Howlet
Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes
Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity
Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling
Sulforaphane (SFN) is a naturally-occurring isothiocyanate best known for its role as an indirect antioxidant. Notwithstanding, in different cancer cell lines, SFN may promote the accumulation of reactive oxygen species (ROS) and cause cell death e.g. by apoptosis. Osteosarcoma often becomes chemoresistant, and new molecular targets to prevent drug resistance are needed. Here, we aimed to determine the effect of SFN on ROS levels and to identify key biomarkers leading to ROS unbalance and apoptosis in the p53-null MG-63 osteosarcoma cell line. MG-63 cells were exposed to SFN for up to 48 h. At 10 μM concentration or higher, SFN decreased cell viability, increased the%early apoptotic cells and increased caspase 3 activity. At these higher doses, SFN increased ROS levels, which correlated with apoptotic endpoints and cell viability decline. In exposed cells, gene expression analysis revealed only partial induction of phase-2 detoxification genes. More importantly, SFN inhibited ROS-scavenging enzymes and impaired glutathione recycling, as evidenced by inhibition of glutathione reductase (GR) activity and combined inhibition of glutathione peroxidase (GPx) gene expression and enzyme activity. In conclusion, SFN induced oxidative stress and apoptosis via a p53-independent mechanism. GPx expression and activity were found associated with ROS accumulation in MG-63 cells and are potential biomarkers for the efficacy of ROS-inducing agents e.g. as co-adjuvant drugs in osteosarcoma
Reliability of a Frailty Index Based on the Clinical Assessment of Health Deficits in Male C57BL/6J Mice.
We investigated the reliability of a newly developed clinical frailty index (FI) that measures frailty based on deficit accumulation in aging mice. FI scores were measured by two different raters independently in a large cohort (n = 233) of 343–430 day-old male C57BL/6J mice. Inter-rater reliability was evaluated with correlation coefficients, the kappa statistic, and intra-class correlation coefficients (ICC) in three separate groups of mice (n = 45, 50, and 138 mice/group) sequentially over 3 months. After each group was evaluated, descriptions of techniques used to identify health deficits were amended. Mice had comparable overall FI scores regardless of rater (0.213±0.002 vs 0.212±0.002; p = .802), although discordant measures declined as techniques were refined. Correlation coefficients (r (2) values) between raters improved throughout the study and mean kappa values increased (mean ± SEM; 0.621±0.018, 0.764±0.017, and 0.836±0.009 for groups 1, 2, and 3; p < .05). Values for intra-class correlation coefficient also improved from .51 (95% confidence interval = 0.11–.73) to .74 (0.54–0.85) and .77 (0.67–.83). FI scores increased over 3 months (p < .05), but did not differ between raters. These results show a high overall inter-rater reliability when the clinical FI tool is used to assess frailty in a large cohort of mice