2,750 research outputs found

    SpaceSemantics: an architecture for modeling environments

    Get PDF
    The notion of modeling location is fundamental to location awareness in ubiquitous computing environments. The investigation of models and the integration with the myriad of location sensing technologies makes for a challenging discipline. Despite notable development of location models, we believe that many challenges remain unresolved. Complexity and scalability, diverse environments coupled with various sensors and managing the privacy and security of sensitive information are open issues. In this paper we discuss our previous experience combining location sensing with mobile agents and how the lessons learnt have lead to the conception of SpaceSemantics, an open architecture for modeling environments

    On the digital forensic analysis of the Firefox browser via recovery of SQLite artifacts from unallocated space

    Get PDF
    A technique and supporting tool for the recovery of browsing activity (both stored and deleted) from current and recent versions of the Firefox web-browser is presented. The generality of the technique is discussed: It is applicable to any software that uses the popular SQLite embedded database engine such as the Apple Safari web-browser and many Android apps

    Using multiple GPUs to accelerate string searching for digital forensic analysis

    Get PDF
    String searching within a large corpus of data is an important component of digital forensic (DF) analysis techniques such as file carving. The continuing increase in capacity of consumer storage devices requires corresponding im-provements to the performance of string searching techniques. As string search-ing is a trivially-parallelisable problem, GPGPU approaches are a natural fit – but previous studies have found that local storage presents an insurmountable performance bottleneck. We show that this need not be the case with modern hardware, and demonstrate substantial performance improvements from the use of single and multiple GPUs when searching for strings within a typical forensic disk image

    SWOOP: an application generator for ORACLE:WWW systems

    Get PDF
    The development of a software package (named Swoop) is described. Swoop is designed to support the generation and maintenance of WWW information systems which store information in ORACLE databases: a so-called hyperbase program. The biggest problem with hyperbases is that they require a sophisticated program to interpret Forms, query appropriate databases, and merge information into Hypertext. There is a clear need for application-generator tools which allow hyperbase programs to be constructed with minimal expertise on the part of the designer. It is this problem which Swoop addresses

    Decentralised discovery of mobile objects

    Get PDF
    The partially connected nature of mobile and ubiquitous computing environments presents software developers with hard challenges. Mobile code has been suggested as a natural fit for simplifying software development for these environments. However, existing strategies for discovering mobile code assume an underlying fixed, stable network. An alternative approach is required for mobile environments, where network size may be unknown and reliability cannot be guaranteed. This paper introduces AMOS, a mobile object platform augmented with a structure overlay network that provides a fully decentralised approach to the discovery of mobile objects. We demonstrate how this technique has better reliability and scalability properties than existing strategies, with minimal communication overhead. Building upon this novel discovery strategy, we show how load balancing of mobile objects in an AMOS network can be achieved through probabilistic means

    On the creation of a secure key enclave via the use of memory isolation in systems management mode

    Get PDF
    One of the challenges of modern cloud computer security is how to isolate or contain data and applications in a variety of ways, while still allowing sharing where desirable. Hardware-based attacks such as RowHammer and Spectre have demonstrated the need to safeguard the cryptographic operations and keys from tampering upon which so much current security technology depends. This paper describes research into security mechanisms for protecting sensitive areas of memory from tampering or intrusion using the facilities of Systems Management Mode. The work focuses on the creation of a small, dedicated area of memory in which to perform cryptographic operations, isolated from the rest of the system. The approach has been experimentally validated by a case study involving the creation of a secure webserver whose encryption key is protected using this approach such that even an intruder with full Administrator level access cannot extract the key

    On the creation of a secure key enclave via the use of memory isolation in systems management mode

    Get PDF
    One of the challenges of modern cloud computer security is how to isolate or contain data and applications in a variety of ways, while still allowing sharing where desirable. Hardware-based attacks such as RowHammer and Spectre have demonstrated the need to safeguard the cryptographic operations and keys from tampering upon which so much current security technology depends. This paper describes research into security mechanisms for protecting sensitive areas of memory from tampering or intrusion using the facilities of Systems Management Mode. The work focuses on the creation of a small, dedicated area of memory in which to perform cryptographic operations, isolated from the rest of the system. The approach has been experimentally validated by a case study involving the creation of a secure webserver whose encryption key is protected using this approach such that even an intruder with full Administrator level access cannot extract the key

    Fragment screening reveals salicylic hydroxamic acid as an inhibitor of <em>Trypanosoma brucei</em> GPI GlcNAc-PI de-N-acetylase

    Get PDF
    The zinc-metalloenzyme GlcNAc-PI de-N-acetylase is essential for the biosynthesis of mature GPI anchors and has been genetically validated in the bloodstream form of Trypanosoma brucei, which causes African sleeping sickness. We screened a focused library of zinc-binding fragments and identified salicylic hydroxamic acid as a GlcNAc-PI de-N-acetylase inhibitor with high ligand efficiency. This is the first small molecule inhibitor reported for the trypanosome GPI pathway. Investigating the structure activity relationship revealed that hydroxamic acid and 2-OH are essential for potency, and that substitution is tolerated at the 4- and 5-positions

    Rapid measurement tools or fast identification of bioaerosols

    Get PDF
    Bioaerosols are complex mixtures of airborne particles of biological origin (BioPM), which vary in size (~0.05-100 μm) and composition (viruses, bacteria, fungi/mould, pollen, cell fragments, and endotoxins). Many bioaerosols are of inhalable size (< 100 μm), but those < 10 μm are respirable and can penetrate deep into the respiratory system, making them a primary health concern(6). In addition to causing infectious diseases (e.g. tuberculosis and COVID-19), bioaerosols are associated with non-infectious diseases, such as hypersensitivity, allergies, chronic obstructive pulmonary disease (COPD) and asthma, that cause significant mortality and morbidity(4,7). Antimicrobial resistance (AMR) also poses an emerging and uncertain threat to public health worldwide, yet, AMR in bioaerosols is generally ignored leaving a major blindspot in the OneHealth approach to fighting AMR

    Lung-protective ventilation initiated in the emergency department (LOV-ED): A study protocol for a quasi-experimental, before-after trial aimed at reducing pulmonary complications

    Get PDF
    INTRODUCTION: In critically ill patients, acute respiratory distress syndrome (ARDS) and ventilator-associated conditions (VACs) are associated with increased mortality, survivor morbidity and healthcare resource utilisation. Studies conclusively demonstrate that initial ventilator settings in patients with ARDS, and at risk for it, impact outcome. No studies have been conducted in the emergency department (ED) to determine if lung-protective ventilation in patients at risk for ARDS can reduce its incidence. Since the ED is the entry point to the intensive care unit for hundreds of thousands of mechanically ventilated patients annually in the USA, this represents a knowledge gap in this arena. A lung-protective ventilation strategy was instituted in our ED in 2014. It aims to address the parameters in need of quality improvement, as demonstrated by our previous research: (1) prevention of volutrauma; (2) appropriate positive end-expiratory pressure setting; (3) prevention of hyperoxia; and (4) aspiration precautions. METHODS AND ANALYSIS: The lung-protective ventilation initiated in the emergency department (LOV-ED) trial is a single-centre, quasi-experimental before-after study testing the hypothesis that lung-protective ventilation, initiated in the ED, is associated with reduced pulmonary complications. An intervention cohort of 513 mechanically ventilated adult ED patients will be compared with over 1000 preintervention control patients. The primary outcome is a composite outcome of pulmonary complications after admission (ARDS and VACs). Multivariable logistic regression with propensity score adjustment will test the hypothesis that ED lung-protective ventilation decreases the incidence of pulmonary complications. ETHICS AND DISSEMINATION: Approval of the study was obtained prior to data collection on the first patient. As the study is a before-after observational study, examining the effect of treatment changes over time, it is being conducted with waiver of informed consent. This work will be disseminated by publication of full-length manuscripts, presentation in abstract form at major scientific meetings and data sharing with other investigators through academically established means. TRIAL REGISTRATION NUMBER: NCT02543554
    • …
    corecore