3,086 research outputs found

    Magnonic Charge Pumping via Spin-Orbit Coupling

    Full text link
    The interplay between spin, charge, and orbital degrees of freedom has led to the development of spintronic devices like spin-torque oscillators, spin-logic devices, and spin-transfer torque magnetic random-access memories. In this development spin pumping, the process where pure spin-currents are generated from magnetisation precession, has proved to be a powerful method for probing spin physics and magnetisation dynamics. The effect originates from direct conversion of low energy quantised spin-waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent normal metal leads. The spin-pumping phenomenon represents a convenient way to electrically detect magnetisation dynamics, however, precessing magnets have been limited so far to pump pure spin currents, which require a secondary spin-charge conversion element such as heavy metals with large spin Hall angle or multi-layer layouts to be detectable. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin-orbit interaction. The generated electric current, differently from spin currents generated by spin-pumping, can be directly detected without the need of any additional spin to charge conversion mechanism and amplitude and phase information about the relativistic current-driven magnetisation dynamics. The charge-pumping phenomenon is generic and gives a deeper understanding of the recently observed spin-orbit torques, of which it is the reciprocal effect and which currently attract interest for their potential in manipulating magnetic information. Furthermore, charge pumping provides a novel link between magnetism and electricity and may find application in sourcing alternating electric currents.Comment: 3 figure

    A preliminary evaluation of a new control-knob design for electronic equipment

    Get PDF
    Two experiments were carried out using five subjects to compare performance using standard and flush fitting rotary controls for electronic equipment. It vas found that the flush knob could be rotated more quickly through several revolutions, but a given setting accuracy was achieved less quickly using this flush knob. Some of the more general advantages and disadvantages of the flush knob are outlined. It should be noted that the primary objective of this study was to provide the participants with some experience in carrying out Human Factors studies and the time allowed was not such as to permit a comprehensive evaluation of the new knob design

    An appraisal of the sciaky 300 KVA projection/spot welding equipment

    Get PDF
    Using the Systems Design Procedure developed at Cranfield, an appraisal of the Sciaky Welding Equipment has been carried out. In particular, the interface on the electronic control cabinet has been redesigned, five solutions of varying engineering complexity and cost being presented

    1,4-Diazo­niabicyclo­[2.2.2]octane bis­(2-chloro­benzoate)

    Get PDF
    The title compound, C6H14N2 2+·2C7H4ClO2 −, contains trimeric units linked by N—H⋯O hydrogen bonds. The carboxyl­ate groups of the 2-chloro­benzoate anions form dihedral angles of 66.1 (1) and 76.1 (1)° with the respective chloro­benzene rings to which they are bound. The hydrogen-bonded trimers are arranged in layers in the (200) planes and the chloro­benzoate anions form edge-to-face inter­actions between layers, with dihedral angles of 61.9 (1) and 49.8 (1)° and centroid–centroid distances of 4.85 (1) and 4.65 (1) Å, respectively, for two crystallographically distinct inter­actions

    The ACS LCID project. X. The Star Formation History of IC 1613: Revisiting the Over-Cooling Problem

    Full text link
    We present an analysis of the star formation history (SFH) of a field near the half light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions which are too low today (the "over-cooling problem"). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.Comment: 13 pages, 12 figures, accepted for publication in the Ap

    The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    Get PDF
    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion, and harnessing this knowledge for immunogen design

    Winds of Change – Predicting Water-Based Recreationists\u27 Support and Opposition for Offshore Wind Energy Development in the Great Lakes

    Get PDF
    This study examined the factors influencing water-based recreationists\u27 perceptions of support and opposition towards off-shore wind energy development (OWD) on Lake Erie. Much of the proposed or future Lake Erie OWD infrastructure may either be within or adjacent to public lands, waters, and protected areas, raising concerns about the potential environmental and social impacts upon recreation stakeholders. The limited body of OWD research within the United States has suggested there are numerous factors that may influence overall perceptions of support and opposition such as political orientation and beliefs in climate change. Moreover, recent research has proposed that the perceived recreation impact of OWD may be the most important predictor of support and opposition. This study confirmed this premise and found the perceived recreation impact of OWD to be the strongest predictor of support. Results of a multiple linear regression suggested that political orientation (β = 0.135), beliefs in the anthropogenic causation of climate change (β = 0.207), beliefs in the occurrence of climate change (β = 0.213), and the perceived recreation impact of OWD among water-based recreationists (β = 0.439) were significant predictors of support for OWD on Lake Erie (R2 = 0.46). Study findings corroborated previous research which suggested that regional climate change beliefs and political attitudes may influence support for OWD. From a policy and management standpoint, study results highlight the importance of assessing and communicating recreation experience and use impacts when planning, developing, and managing OWD and related decisions in the United States

    The ISLAndS project II: The Lifetime Star Formation Histories of Six Andromeda dSphs

    Get PDF
    The Initial Star formation and Lifetimes of Andromeda Satellites (ISLAndS) project uses Hubble Space Telescope imaging to study a representative sample of six Andromeda dSph satellite companion galaxies. The main goal of the program is to determine whether the star formation histories (SFHs) of the Andromeda dSph satellites demonstrate significant statistical differences from those of the Milky Way, which may be attributable to the different properties of their local environments. Our observations reach the oldest main sequence turn-offs, allowing a time resolution at the oldest ages of ~ 1 Gyr, which is comparable to the best achievable resolution in the MW satellites. We find that the six dSphs present a variety of SFHs that are not strictly correlated with luminosity or present distance from M31. Specifically, we find a significant range in quenching times (lookback times from 9 to 6 Gyr), but with all quenching times more than ~ 6 Gyr ago. In agreement with observations of Milky Way companions of similar mass, there is no evidence of complete quenching of star formation by the cosmic UV background responsible for reionization, but the possibility of a degree of quenching at reionization cannot be ruled out. We do not find significant differences between the SFHs of the three members of the vast, thin plane of satellites and the three off-plane dSphs. The primary difference between the SFHs of the ISLAndS dSphs and Milky Way dSph companions of similar luminosities and host distances is the absence of very late quenching (< 5 Gyr ago) dSphs in the ISLAndS sample. Thus, models that can reproduce satellite populations with and without late quenching satellites will be of extreme interest.Comment: 24 pages, 11 figures, 3 tables, submitted to the Ap

    High Redshift Supernova Rates

    Full text link
    We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z~0.7 and type Ia supernovae to z~1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of 1.6 in the range 0.3<z<0.7, and an overall increase by a factor of 7 to z~0.7 in comparison to the local core collapse supernova rate. The increase in the rate in this redshift range in consistent with recent measurements of the star formation rate derived from UV-luminosity densities and IR datasets. Based on 25 type Ia supernovae, we find a SN Ia rate that is a factor 3-5 higher at z~1 compared to earlier estimates at lower redshifts (z<0.5), implying that the type Ia supernova rate traces a higher star formation rate at redshifts z>1 compared to low redshift. At higher redshift (z>1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3-8 M_Sun, we find that 5-7% of the available progenitors explode as type Ia supernovae.Comment: 16 pages, 3 figures, accepted for publication in the Astrophysical Journa

    Bioluminescent imaging in induced mouse models of endometriosis reveals differences in four model variations

    Get PDF
    Our understanding of the etiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of ‘lesions’ generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behavior of mice with induced endometriosis and the impact of the GnRH antagonist Cetrorelix on lesion regression and sensory behavior. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were as well as their cellular composition. The severity of pain-like behavior also varied across models. Whilst Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behavior. Collectively, our results demonstrate key differences in the progression of the ‘disease’ across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes / heterogeneity observed in women should become a standard approach to discovery science in the field of endometriosis
    corecore