73 research outputs found

    Cancer-Stimulated Mesenchymal Stem Cells Create a Carcinoma Stem Cell Niche via Prostaglandin E

    Get PDF
    Mesenchymal cells of the tumor-associated stroma are critical determinants of carcinoma cell behavior. We focus here on interactions of carcinoma cells with mesenchymal stem cells (MSC), which are recruited to the tumor stroma and, once present, are able to influence the phenotype of the carcinoma cells. We find that carcinoma cell–derived interleukin-1 (IL-1) induces prostaglandin E₂(PGE₂) secretion by MSCs. The resulting PGE₂ operates in an autocrine manner, cooperating with ongoing paracrine IL-1 signaling, to induce expression of a group of cytokines by the MSCs. The PGE₂ and cytokines then proceed to act in a paracrine fashion on the carcinoma cells to induce activation of β-catenin signaling and formation of cancer stem cells. These observations indicate that MSCs and derived cell types create a cancer stem cell niche to enable tumor progression via release of PGE₂ and cytokines. SIGNIFICANCE: Although PGE₂ has been implicated time and again in fostering tumorigenesis, its effects on carcinoma cells that contribute specifically to tumor formation are poorly understood. Here we show that tumor cells are able to elicit a strong induction of the COX-2/microsomal prostaglandin-E synthase-1 (mPGES-1)/PGE₂ axis in MSCs recruited to the tumor-associated stroma by releasing IL-1, which in turn elicits a mesenchymal/stem cell–like phenotype in the carcinoma cells.Breast Cancer Research FoundationNational Institutes of Health (U.S.) (U54CA163109)Massachusetts Institute of Technology. Ludwig Center for Cancer Researc

    The Outgrowth of Micrometastases Is Enabled by the Formation of Filopodium-like Protrusions

    Get PDF
    Disseminated cancer cells that have extravasated into the tissue parenchyma must interact productively with its extracellular matrix components to survive, proliferate, and form macroscopic metastases. The biochemical and cell biologic mechanisms enabling this interaction remain poorly understood. We find that the formation of elongated integrin β1-containing adhesion plaques by cancer cells that have extravasated into the lung parenchyma enables the proliferation of these cells via activation of focal adhesion kinase. These plaques originate in and appear only after the formation of filopodium-like protrusions (FLP) that harbor integrin β1 along their shafts. The cytoskeleton-regulating proteins Rif and mDia2 contribute critically to the formation of these protrusions and thereby enable the proliferation of extravasated cancer cells. Hence, the formation of FLPs represents a critical rate-limiting step for the subsequent development of macroscopic metastases. SIGNIFICANCE: Although the mechanisms of metastatic dissemination have begun to be uncovered, those involved in the establishment of extravasated cancer cells in foreign tissue microenvironments remained largely obscure. We have studied the behavior of recently extravasated cancer cells in the lungs and identified a series of cell biologic processes involving the formation of filopodium-like protrusions and the subsequent development of elongated, mature adhesion plaques, which contribute critically to the rapid proliferation of the micrometastatic cells and thus are prerequisites to the eventual lung colonization by these cells.National Institutes of Health (U.S.) (Grant P01-CA080111

    Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency

    Get PDF
    The emergence of metastatic disease in cancer patients many years or decades after initial successful treatment of primary tumors is well documented but poorly understood at the molecular level. Recent studies have begun exploring the cell-intrinsic programs, causing disseminated tumor cells to enter latency and the cellular signals in the surrounding nonpermissive tissue microenvironment that maintain the latent state. However, relatively little is known about the mechanisms that enable disseminated tumor cells to escape cancer dormancy or tumor latency. We describe here an in vivo model of solitary metastatic latency in the lung parenchyma. The induction of a localized inflammation in the lungs, initiated by lipopolysaccharide treatment, triggers the awakening of these cells, which develop into macroscopic metastases. The escape from latency is dependent on the expression of Zeb1, a key regulator of the epithelial-to-mesenchymal transition (EMT). Furthermore, activation of the EMT program on its own, as orchestrated by Zeb1, is sufficient to incite metastatic out-growth by causing carcinoma cells to enter stably into a metastasis-initiating cell state.National Institutes of Health (U.S.) (Grant P01-CA080111)National Institutes of Health (U.S.) (Grant R01-CA078461)National Institutes of Health (U.S.) (Grant U54-CA163109

    Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1

    Get PDF
    PERK signaling is required for cancer invasion and there is interest in targeting this pathway for therapy. Unfortunately, chemical inhibitors of PERK's kinase activity cause on-target side effects that have precluded their further development. One strategy for resolving this difficulty would be to target downstream components of the pathway that specifically mediate PERK's pro-invasive and metastatic functions. Here we identify the transcription factor CREB3L1 as an essential mediator of PERK's pro-metastatic functions in breast cancer. CREB3L1 acts downstream of PERK, specifically in the mesenchymal subtype of triple-negative tumors, and its inhibition by genetic or pharmacological methods suppresses cancer cell invasion and metastasis. In patients with this tumor subtype, CREB3L1 expression is predictive of distant metastasis. These findings establish CREB3L1 as a key downstream mediator of PERK-driven metastasis and a druggable target for breast cancer therapy.National Science Foundation (U.S.) (Grant 1122374

    Distinct EMT programs control normal mammary stem cells and tumour-initiating cells

    Get PDF
    Tumour-initiating cells (TICs) are responsible for metastatic dissemination and clinical relapse in a variety of cancers. Analogies between TICs and normal tissue stem cells have led to the proposal that activation of the normal stem-cell program within a tissue serves as the major mechanism for generating TICs. Supporting this notion, we and others previously established that the Slug epithelial-to-mesenchymal transition-inducing transcription factor (EMT-TF), a member of the Snail family, serves as a master regulator of the gland-reconstituting activity of normal mammary stem cells, and that forced expression of Slug in collaboration with Sox9 in breast cancer cells can efficiently induce entrance into the TIC state. However, these earlier studies focused on xenograft models with cultured cell lines and involved ectopic expression of EMT-TFs, often at non-physiological levels. Using genetically engineered knock-in reporter mouse lines, here we show that normal gland-reconstituting mammary stem cells residing in the basal layer of the mammary epithelium and breast TICs originating in the luminal layer exploit the paralogous EMT-TFs Slug and Snail, respectively, which induce distinct EMT programs. Broadly, our findings suggest that the seemingly similar stem-cell programs operating in TICs and normal stem cells of the corresponding normal tissue are likely to differ significantly in their details.Breast Cancer Research FoundationSamuel Waxman Cancer Research FoundationLudwig Center for Molecular Oncology at MITNational Cancer Institute (U.S.).(Program P01-CA080111)National Cancer Institute (U.S.).(Program R01-CA078461)National Cancer Institute (U.S.).(Program U01-CA184897

    De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling

    Get PDF
    Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)–scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even in the absence of oxidative damage. Using this approach, we found that the Nrf2 transcription factor, which is the master regulator of cellular responses to oxidative stress, is preactivated in de-differentiated cells. In de-differentiated cells, Nrf2 is not activated by oxidation but rather through a noncanonical mechanism involving its phosphorylation by the ER membrane kinase PERK. In contrast, differentiated cells require oxidative damage to activate Nrf2. Constitutive PERK-Nrf2 signaling protects de-differentiated cells from chemotherapy by reducing ROS levels and increasing drug efflux. These findings are validated in therapy-resistant basal breast cancer cell lines and animal models, where inhibition of the PERK-Nrf2 signaling axis reversed the MDR of de-differentiated cancer cells. Additionally, analysis of patient tumor datasets showed that a PERK pathway signature correlates strongly with chemotherapy resistance, tumor grade, and overall survival. Collectively, these results indicate that de-differentiated cells up-regulate MDR genes via PERK-Nrf2 signaling and suggest that targeting this pathway could sensitize drug-resistant cells to chemotherapy.Breast Cancer Research Program (U.S.) (Award No. W81XWH-12-BCRP-POSTDOC2)Breast Cancer Alliance (Young Investigator Grant)National Science Foundation (U.S.) (Graduate Research Fellowship Grant No. 1122374)Richard and Susan Smith Family Foundation (Excellence in Biomedical Research award

    Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is a cell biological program that confers mesenchymal traits on carcinoma cells and drives their metastatic dissemination. It is unclear, however, whether the activation of EMT in carcinoma cells can change their susceptibility to immune attack. We demonstrate here that mammary tumor cells arising from more epithelial carcinoma cell lines expressed high levels of MHC-I, low levels of PD-L1, and contained within their stroma CD8þT cells and M1 (antitumor) macrophages. In contrast, tumors arising from more mesenchymal carcinoma cell lines exhibiting EMT markers expressed low levels of MHC-I, high levels of PD-L1, and contained within their stroma regulatory T cells, M2 (protumor) macrophages, and exhausted CD8þT cells. Moreover, the more mesenchymal carcinoma cells within a tumor retained the ability to protect their more epithelial counterparts from immune attack. Finally, epithelial tumors were more susceptible to elimination by immunotherapy than corresponding mesenchymal tumors. Our results identify immune cells and immunomodulatory markers that can be potentially targeted to enhance the susceptibility of immunosuppressive tumors to various therapeutic regimens.National Institutes of Health (U.S.) (Grant P01-CA080111

    Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model

    Get PDF
    MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientific and clinical challenge. Here we show that systemic treatment of tumor-bearing mice with miR-10b antagomirsa class of chemically modified anti-miRNA oligonucleotidesuppresses breast cancer metastasis. Both in vitro and in vivo, silencing of miR-10b with antagomirs significantly decreases miR-10b levels and increases the levels of a functionally important miR-10b target, Hoxd10. Administration of miR-10b antagomirs to mice bearing highly metastatic cells does not reduce primary mammary tumor growth but markedly suppresses formation of lung metastases in a sequence-specific manner. The miR-10b antagomir, which is well tolerated by normal animals, appears to be a promising candidate for the development of new anti-metastasis agents

    A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis

    Get PDF
    MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.Massachusetts Institute of Technology (Daniel K. Ludwig Foundation Cancer Research Professor)American Cancer Society (ACS Research Professor)United States. Dept. of Defense (Breast Cancer Research Program Predoctoral Fellow)United States. Dept. of Defense (Breast Cancer Research Program, DoD BCRP Idea Award))Harvard University (Harvard Breast Cancer SPORE)National Institutes of Health (U.S.) (RO1 CA078461)National Institutes of Health (U.S.) (PO1 CA080111
    • …
    corecore