8 research outputs found

    Thermochemistry of yavapaiite KFe(SO4)2: Formation and decomposition

    Get PDF
    Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C

    Jarosite stability on Mars

    Get PDF
    Jarosite, a potassium (sodium) iron sulphate hydrated mineral, has recently been identified on the martian surface by the Opportunity rover. Using recent thermochemical data [Drouet and Navrotsky, 2003, Geochim. Cosmochim. Acta 67, 2063–2076; Forray et al., 2005, Geochim. Cosmochim. Acta, in press], we calculate the equilibrium decomposition curve of jarosite and show that it is thermodynamically stable under most present martian pressures and temperatures. Its stability makes jarosite potentially useful to retain textural, chemical, and isotopic evidence of past history, including possible biological activity, on Mars

    Synthesis, characterization and thermochemistry of synthetic Pb–As, Pb–Cu and Pb–Zn jarosites

    Get PDF
    The enthalpy of formation from the elements of well characterized Pb-As, Pb-Cu, and Pb-Zn synthetic jarosites, corresponding to chemical formulas (H3O)0.68±0.03Pb0.32±0.002Fe2.86±0.14(SO4)1.69±0.08(AsO4)0.31±0.02(OH)5.59±0.28(H2O)0.41±0.02, (H3O)0.67±0.03Pb0.33±0.02Fe2.71±0.14Cu0.25±0.01(SO4)2±0.00(OH)5.96±0.30(H2O)0.04±0.002 and (H3O)0.57±0.03Pb0.43±0.02Fe2.70±0.14Zn0.21±0.01(SO4)2±0.00(OH)5.95±0.30(H2O)0.05±0.002, was measured by high temperature oxide melt solution calorimetry and gave ΔH°f = -3691.2 ± 8.6 kJ/mol, ΔH°f = -3653.6 ± 8.2 kJ/mol, and ΔH°f = -3669.4 ± 8.4 kJ/mol, respectively. Using estimated entropies, the standard Gibbs free energy of formation from elements at 298 K ΔG°f of the three compounds were calculated to be -3164.8 ± 9.1 kJ/mol, -3131.4 ± 8.7 kJ/mol, and -3153.6 ± 8.9 kJ/mol, respectively. Based on these free energies, their logKsp values are -13.94 ± 1.89, -4.38 ± 1.81 and -3.75 ± 1.80, respectively. For this compounds, a log10{Pb2+} - pH diagram is presented. The diagram shows that the formation of Pb-As jarosite may decrease aqueous arsenic and lead concentrations to meet drinking water standards. The new thermodynamic data confirm that transformation of Pb-As jarosite to plumbojarosite is thermodynamically possible

    Studies on Aries River (Apuseni Mountains) pollution using factorial analyses (in Romanian)

    Get PDF
    In the present study we try to use factor analysis in the characterisation of river water chemistry between the municipalities of Cheia and Muncel along a 54-km stretch of the Aries River (NW Romania). The results show that 4 factors can explain 88% of the water chemistry. The first factor explains 39% of the total data variance, and represents the water-rock interactions. This high percent indicates the importance of water rock interactions in defining the chemistry of surface waters. The second factor explains 23% of the data variation and represents the influence of mining effluents. The influence of the mine tailings on water chemistry is represented by the third factor. The sum of the second and the third factor can explain 40% of the total data variance, which confirms that the Arieş River is highly polluted by the mining industry. The last factor, which explains 8% of data variation represents the influence of the agricultural and domestic effluents

    Using the Pollution Index to Characterize the Level of Contamination of the Aries River (Apuseni Mountains) (in Romanian)

    Get PDF
    In the present study we try to use a new index called pollution index for define the pollution level of river using the dissolved heavy metal concentrations. This index derives from Müller’s geoaccumulation index but use the dissolved metal concentrations. The river water samples collected between the municipalities of Cheia and Muncel along a 54-km stretch of the Aries River (NW Romania) were analysed by capillary electrophoresis for heavy metals. The primary results show that pollution index can be used for determination of pollution level of river in base of dissolved heavy metal concentration as is confirmed also by factor analysis (Forray, 2001)

    Thermochemistry of yavapaiite KFe(SO4)2: Formation and decomposition

    No full text
    International audienceYavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C

    Jarosite stability on Mars

    No full text
    International audienceJarosite, a potassium (sodium) iron sulphate hydrated mineral, has recently been identified on the martian surface by the Opportunity rover. Using recent thermochemical data [Drouet and Navrotsky, 2003, Geochim. Cosmochim. Acta 67, 2063–2076; Forray et al., 2005, Geochim. Cosmochim. Acta, in press], we calculate the equilibrium decomposition curve of jarosite and show that it is thermodynamically stable under most present martian pressures and temperatures. Its stability makes jarosite potentially useful to retain textural, chemical, and isotopic evidence of past history, including possible biological activity, on Mars
    corecore