5 research outputs found

    Salt Stress Affects Plastid Ultrastructure and Photosynthetic Activity But Not the Essential Oil Composition in Spearmint (Mentha spicata L. var. crispa 'Moroccan')

    Get PDF
    High levels of soil salinity affect plant growth, reproduction, water and ion uptake, and plant metabolism in a complex manner. In this work, the effect of salt stress on vegetative growth, photosynthetic activity, and chloroplast ultrastructure of spearmint (Mentha spicata L. var. crispa “Moroccan”) was investigated. After 2 weeks of low concentration treatments (5, 25, and 50 mM NaCl) of freshly cut shoots, we observed that the stem-derived adventitious root formation, which is a major mean for vegetative reproduction among mints, was completely inhibited at 50 mM NaCl concentration. One-week-long, high concentration (150 mM NaCl) salt stress, and isosmotic polyethylene glycol (PEG) 6000 treatments were compared in intact (rooted) plants and freshly cut, i.e., rootless shoots. Our data showed that roots have an important role in mitigating the deleterious effects of both the osmotic (PEG treatment) and specific ionic components of high salinity stress. At 50 mM NaCl or above, the ionic component of salt stress caused strong and irreversible physiological alterations. The effects include a decrease in relative water content, the maximal and actual quantum efficiency of photosystem II, relative chlorophyll content, as well as disorganization of the native chlorophyll-protein complexes as revealed by 77 K fluorescence spectroscopy. In addition, important ultrastructural damage was observed by transmission electron microscopy such as the swelling of the thylakoid lumen at 50 mM NaCl treatment. Interestingly, in almost fully dry leaf regions and leaves, granum structure was relatively well retained, however, their disorganization occurred in leaf chloroplasts of rooted spearmint treated with 150 mM NaCl. This loss of granum regularity was also confirmed in the leaves of these plants using small-angle neutron scattering measurements of intact leaves of 150 mM NaCl-stressed rooted plants. At the same time, solid-phase microextraction of spearmint leaves followed by gas chromatography and mass spectrometry (GC/MS) analyses revealed that the essential oil composition of spearmint was unaffected by the treatments applied in this work. Taken together, the used spearmint cultivar tolerates low salinity levels. However, at 50 mM NaCl concentration and above, the ionic components of the stress strongly inhibit adventitious root formation and thus their clonal propagation, and severely damage the photosynthetic apparatus

    Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy

    Get PDF
    The stability of host–guest complexes of two NSAID drugs with similar physicochemical properties, fenbufen and fenoprofen, was investigated by comparing induced circular dichroism and 1H nuclear magnetic resonance methods using eight cyclodextrins of different degrees of substitution and isomeric purity as guest compounds. These cyclodextrins include native β-cyclodextrin (BCyD), 2,6-dimethyl-β-cyclodextrin 50 (DIMEB50), 80 (DIMEB80) and 95% (DIMEB95) isomerically pure versions, low-methylated CRYSMEB, randomly methylated β-cyclodextrin (RAMEB) and 4.5 and 6.3 average substitution grade hydroxypropyl-β-cyclodextrin (HPBCyD). The stability constants obtained by the two methods show good agreement in most cases. For fenbufen complexes, there is a clear trend that the stability constant increases with the degree of substitution while isomer purity has a smaller effect on the magnitude of stability constants. A significant difference was found in the case of DIMEB50 when compared to DIMEB80/DIMEB95, while the latter two are similar. In the fenbufen–fenoprofen comparison, fenbufen, with its linear axis, gives a more stable complex, while fenoprofen shows lower constants and poorly defined trends

    Budapest 1956

    No full text
    Pour la première fois, les lecteurs français vont découvrir les récits et poèmes consacrés par quelques-uns des plus grands écrivains hongrois à l’insurrection de 1956, cette grande « révolution antitotalitaire » (Raymond Aron) qui a marqué l’histoire et révélé au monde la résistance des consciences à la tyrannie stalinienne. Sándor Márai, György Konrád, Ferenc Karinthy, Tibor Déry, István Örkény et tant d’autres, jusqu’aux générations plus récentes comme Krisztina Tóth ou István Kemény, nous font revivre ces quinze jours de liberté folle et de rêves brisés, dans des textes pour la plupart inédits en français. De cette épopée de tout un pays, leurs écrits nous montrent toute la complexité humaine : le lyrisme et le courage, mais aussi les douleurs, les doutes et la mémoire contrariée

    The ideology of modernization and the policy of materialism: The day after for the socialists

    No full text
    corecore