19 research outputs found

    Privacy-Preserving Identification via Layered Sparse Code Design: Distributed Servers and Multiple Access Authorization

    Full text link
    We propose a new computationally efficient privacy-preserving identification framework based on layered sparse coding. The key idea of the proposed framework is a sparsifying transform learning with ambiguization, which consists of a trained linear map, a component-wise nonlinearity and a privacy amplification. We introduce a practical identification framework, which consists of two phases: public and private identification. The public untrusted server provides the fast search service based on the sparse privacy protected codebook stored at its side. The private trusted server or the local client application performs the refined accurate similarity search using the results of the public search and the layered sparse codebooks stored at its side. The private search is performed in the decoded domain and also the accuracy of private search is chosen based on the authorization level of the client. The efficiency of the proposed method is in computational complexity of encoding, decoding, "encryption" (ambiguization) and "decryption" (purification) as well as storage complexity of the codebooks.Comment: EUSIPCO 201

    River-bed armoring as a granular segregation phenomenon

    Full text link
    Gravel-river beds typically have an "armored" layer of coarse grains on the surface, which acts to protect finer particles underneath from erosion. River bed-load transport is a kind of dense granular flow, and such flows are known to vertically segregate grains. The contribution of granular physics to river-bed armoring, however, has not been investigated. Here we examine these connections in a laboratory river with bimodal sediment size, by tracking the motion of particles from the surface to deep inside the bed, and find that armor develops by two distinct mechanisms. Bed-load transport in the near-surface layer drives rapid segregation, with a vertical advection rate proportional to the granular shear rate. Creeping grains beneath the bed-load layer give rise to slow but persistent segregation, which is diffusion dominated and insensitive to shear rate. We verify these findings with a continuum phenomenological model and discrete element method simulations. Our results suggest that river beds armor by granular segregation from below --- rather than fluid-driven sorting from above --- while also providing new insights on the mechanics of segregation that are relevant to a wide range of granular flows

    Acoustically-induced slip in sheared granular layers: application to dynamic earthquake triggering

    Full text link
    A fundamental mystery in earthquake physics is ``how can an earthquake be triggered by distant seismic sources?'' Here, we use discrete element method simulations of a granular layer, during stick-slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. Using Coulomb friction law for grains interaction, we observe delayed triggering of slip in the granular gouge. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance, {\it i.e.}, transient vibration and triggered slip are simultaneous. The critical strain is order of 10−610^{-6}, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    Data for Shields stress 4.7

    No full text
    small and large grains number ratio time-series for Shields stress 4.7. Concentration map of large grains can be made using the following contour plot commands in MATLAB or other data analysis packages:<div><br></div><div>%%%%</div><div><p>nlratio_tot = nlg./(nsm+nlg);</p><p>for i=1:458</p><p>time_ts(i,:)=time;</p><p>end</p><p>y_pos = (1:1:458)*(25/458);</p><p>for i=1:length(time)</p><p>y_mesh(:,i)=y_pos;</p><p>end</p><p>[xq,yq] = meshgrid(0:0.0005:1,0:0.175:25);</p><p>vq = griddata(time_ts(1:458,1:length(time)),25-y_mesh(1:458,1:length(time)),nlratio_tot(1:458,1:length(time)),xq,yq);</p><p>figure; [C,h] = contourf(xq,yq,vq,'LineStyle', 'none','LevelStep', 0.01);</p><p>colormap parula;</p><p>%%%%</p></div
    corecore