76 research outputs found
An Integer Programming Formulation of the Minimum Common String Partition problem
We consider the problem of finding a minimum common partition of two strings
(MCSP). The problem has its application in genome comparison. MCSP problem is
proved to be NP-hard. In this paper, we develop an Integer Programming (IP)
formulation for the problem and implement it. The experimental results are
compared with the previous state-of-the-art algorithms and are found to be
promising.Comment: arXiv admin note: text overlap with arXiv:1401.453
Image-Dependent Spatial Shape-Error Concealment
Existing spatial shape-error concealment techniques are broadly based upon either parametric curves that exploit geometric information concerning a shape's contour or object shape statistics using a combination of Markov random fields and maximum a posteriori estimation. Both categories are to some extent, able to mask errors caused by information loss, provided the shape is considered independently of the image/video. They palpably however, do not afford the best solution in applications where shape is used as metadata to describe image and video content. This paper presents a novel image-dependent spatial shape-error concealment (ISEC) algorithm that uses both image and shape information by employing the established rubber-band contour detecting function, with the novel enhancement of automatically determining the optimal width of the band to achieve superior error concealment. Experimental results corroborate both qualitatively and numerically, the enhanced performance of the new ISEC strategy compared with established techniques
Automatic log parser to support forensic analysis
Event log parsing is a process to split and label each field in a log entry. Existing approaches commonly use regular expressions or parsing rules to extract the fields. However, such techniques are time-consuming as a forensic investigator needs to define a new rule for each log file type. In this paper, we present a tool, namely nerlogparser, to parse the log entries automatically, where log parsing is modeled as a named entity recognition problem. We use a deep machine learning technique, specifically the bidirectional long short-term memory networks, as the underlying architecture for this purpose. Unlike existing tools, nerlogparser is a fully automatic tool as the investigators do not need to define any parsing rules and it is generic as there is only one model to parse various types of log files. Experimental results show that nerlogparser achieves superior performance compared with other traditional machine learning methods
A Modified Distortion Measurement Algorithm for Shape Coding
Efficient encoding of object boundaries has become increasingly prominent in areas such as content-based storage and retrieval, studio and television post-production facilities, mobile communications and other real-time multimedia applications. The way distortion between the actual and approximated shapes is measured however, has a major impact upon the quality of the shape coding algorithms. In existing shape coding methods, the distortion measure do not generate an actual distortion value, so this paper proposes a new distortion measure, called a modified distortion measure for shape coding (DMSC) which incorporates an actual perceptual distance. The performance of the Operational Rate Distortion optimal algorithm [1] incorporating DMSC has been empirically evaluated upon a number of different natural and synthetic arbitrary shapes. Both qualitative and quantitative results confirm the superior results in comparison with the ORD lgorithm for all test shapes, without any increase in computational complexity
A Discriminative Representation of Convolutional Features for Indoor Scene Recognition
Indoor scene recognition is a multi-faceted and challenging problem due to
the diverse intra-class variations and the confusing inter-class similarities.
This paper presents a novel approach which exploits rich mid-level
convolutional features to categorize indoor scenes. Traditionally used
convolutional features preserve the global spatial structure, which is a
desirable property for general object recognition. However, we argue that this
structuredness is not much helpful when we have large variations in scene
layouts, e.g., in indoor scenes. We propose to transform the structured
convolutional activations to another highly discriminative feature space. The
representation in the transformed space not only incorporates the
discriminative aspects of the target dataset, but it also encodes the features
in terms of the general object categories that are present in indoor scenes. To
this end, we introduce a new large-scale dataset of 1300 object categories
which are commonly present in indoor scenes. Our proposed approach achieves a
significant performance boost over previous state of the art approaches on five
major scene classification datasets
- …