5 research outputs found

    Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux.

    No full text
    In the Arabian Sea, productivity in the surface waters and particle flux to the deep sea are controlled by monsoonal winds. The flux maxima during the South-West (June–September) and the North-East Monsoon (December–March) are some of the highest particle fluxes recorded with deep-sea sediment traps in the open ocean. Benthic microbial biomass and activities in surface sediments were measured for the first time in March 1995 subsequent to the NE-monsoon and in October 1995 subsequent to the SW-monsoon. These measurements were repeated in April/May 1997 and February/March 1998, at a total of six stations from 1920 to 4420 m water depth. This paper presents a summary on the regional and temporal variability of microbial biomass, production, enzyme activity, degradation of Full-size image (<1 K)-labeled Synechococcus material as well as sulfate reduction in the northern, western, eastern, central and southern Arabian deep sea. We found a substantial regional variation in microbial biomass and activity, with highest values in the western Arabian Sea (station WAST), decreasing approximately threefold to the south (station SAST). Benthic microbial biomass and activity during the NE-monsoon was as high or higher than subsequent to the SW-monsoon, indicating a very rapid turnover of POC in the surface sediments. This variation in the biomass and activity of the microbial assemblages in the Arabian deep sea can largely be explained by the regional and temporal variation in POC flux. Compared to other abyssal regions, the substantially higher benthic microbial biomasses and activities in the Arabian Sea reflect the extremely high productivity of this tropical basin

    Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations

    Get PDF
    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([14C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6–73 ky in sediments deeper than 1 m, 50–96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL−1 sediment⋅y−1 at the surface to 0.2 pg⋅mL−1⋅y−1 at 1 km depth, equivalent to production of 7 × 105 to 140 archaeal cells⋅mL−1 sediment⋅y−1, respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle
    corecore