4 research outputs found

    p32 is a novel mammalian Lgl binding protein that enhances the activity of protein kinase CĪ¶ and regulates cell polarity

    Get PDF
    Lgl (lethal giant larvae) plays an important role in cell polarity. Atypical protein kinase C (aPKC) binds to and phosphorylates Lgl, and the phosphorylation negatively regulates Lgl activity. In this study, we identify p32 as a novel Lgl binding protein that directly binds to a domain on mammalian Lgl2 (mLgl2), which contains the aPKC phosphorylation site. p32 also binds to PKCĪ¶, and the three proteins form a transient ternary complex. When p32 is bound, PKCĪ¶ is stimulated to phosphorylate mLgl2 more efficiently. p32 overexpression in Madinā€“Darby canine kidney cells cultured in a 3D matrix induces an expansion of the actin-enriched apical membrane domain and disrupts cell polarity. Addition of PKCĪ¶ inhibitor blocks apical actin accumulation, which is rescued by p32 overexpression. p32 knockdown by short hairpin RNA also induces cell polarity defects. Collectively, our data indicate that p32 is a novel regulator of cell polarity that forms a complex with mLgl2 and aPKC and enhances aPKC activity

    Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth.

    Get PDF
    BACKGROUND: Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. RESULTS: We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2Ī±. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction.Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1 induced ER-stress in U87 cells in lipoprotein-deplete conditions and prevented tumor growth in a xenograft model. CONCLUSIONS: Taken together, these results demonstrate that regulation of lipid composition by SREBP is essential to maintain the balance between protein and lipid biosynthesis downstream of Akt and to prevent resultant ER-stress and cell death. Regulation of lipid metabolism by the Akt/mTORC1 signaling axis is required for the growth and survival of cancer cells

    Casein Kinase 1 Is a Novel Negative Regulator of E-Cadherin-Based Cell-Cell Contactsā–æ ā€ 

    No full text
    Cadherins are the most crucial membrane proteins for the formation of tight and compact cell-cell contacts. Cadherin-based cell-cell adhesions are dynamically established and/or disrupted during various physiological and pathological processes. However, the molecular mechanisms that regulate cell-cell contacts are not fully understood. In this paper, we report a novel functional role of casein kinase 1 (CK1) in the regulation of cell-cell contacts. Firstly, we observed that IC261, a specific inhibitor of CK1, stabilizes cadherin-based cell-cell contacts, whereas the overexpression of CK1 disrupts them. CK1 colocalizes with E-cadherin and phosphorylates the cytoplasmic domain of E-cadherin in vitro and in a cell culture system. We show that the major CK1 phosphorylation site of E-cadherin is serine 846, a highly conserved residue between classical cadherins. Constitutively phosphorylated E-cadherin (S846D) is unable to localize at cell-cell contacts and has decreased adhesive activity. Furthermore, phosphorylated E-cadherin (S846D) has weaker interactions with Ī²-catenin and is internalized more efficiently than wild-type E-cadherin. These data indicate that CK1 is a novel negative regulator of cadherin-based cell-cell contacts

    The Transcriptional Repressor Glis2 Is a Novel Binding Partner for p120 Catenin

    Get PDF
    In epithelial cells, p120 catenin (p120) localizes at cellā€“cell contacts and regulates adhesive function of the cadherin complex. In addition, p120 has been reported to localize in the nucleus, although the nuclear function of p120 is not fully understood. Here, we report the identification of Gli-similar 2 (Glis2) as a novel binding protein for p120. Glis2 is a KrĆ¼ppel-like transcriptional repressor with homology to the Gli family, but its physiological function has not been well characterized. In this study, we show that coexpression of Glis2 and Src induces nuclear translocation of p120. Furthermore, p120 induces the C-terminal cleavage of Glis2, and this cleavage is further enhanced by Src. The cleaved form of Glis2 loses one of its five zinc finger domains, but it is still able to bind DNA. Functional studies in chick neural tube indicate that full-length Glis2 can affect neuronal differentiation, whereas the cleaved form requires coexpression of p120 to have a similar effect. These data indicate that p120 has additional novel functions in the nucleus together with Glis2
    corecore