12 research outputs found

    Genetic risk score and adiposity interact to influence triglyceride levels in a cohort of Filipino women

    Get PDF
    BACKGROUND/OBJECTIVES: Individually, genetic variants only moderately influence cardiometabolic (CM) traits, such as lipid and inflammatory markers. In this study we generated genetic risk scores from a combination of previously reported variants influencing CM traits, and used these scores to explore how adiposity levels could mediate genetic contributions to CM traits. SUBJECTS/METHODS: Participants included 1649 women from the 2005 Cebu Longitudinal Health and Nutrition Survey. Three genetic risk scores were constructed for C-reactive protein (CRP), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs). We used linear regression models to assess the association between each genetic risk score and its related trait. We also tested for interactions between each score and measures of adiposity. RESULTS: Each genetic risk score explained a greater proportion of variance in trait levels than any individual genetic variant. We found an interaction between the TG genetic risk score (2.29–14.34 risk alleles) and waist circumference (WC) (P(interaction)=1.66 × 10(−2)). Based on model predictions, for individuals with a higher TG genetic risk score (75th percentile=12), having an elevated WC (⩾80 cm) increased TG levels from 1.32 to 1.71 mmol l(−1). However, for individuals with a lower score (25th percentile=7), having an elevated WC did not significantly change TG levels. CONCLUSIONS: The TG genetic risk score interacted with adiposity to synergistically influence TG levels. For individuals with a genetic predisposition to elevated TG levels, our results suggest that reducing adiposity could possibly prevent further increases in TG levels and thereby lessen the likelihood of adverse health outcomes such as cardiovascular disease

    Chemical composition and health benefits of coconut oil: an overview

    No full text
    Coconut oil is an integral part of Sri Lankan and many South Asian diets. Initially, coconut oil was classified along with saturated fatty acid food items and criticized for its negative impact on health. However, research studies have shown that coconut oil is a rich source of medium-chain fatty acids. Thus, this has opened new prospects for its use in many fields. Beyond its usage in cooking, coconut oil has attracted attention due to its hypocholesterolemic, anticancer, antihepatosteatotic, antidiabetic, antioxidant, anti-inflammatory, antimicrobial and skin moisturizing properties. Despite all the health benefits, consumption of coconut oil is still underrated due to a lack of supportive scientific evidence. Even though studies done in Asian countries claim a favorable impact on cardiac health and serum lipid profile, the limitations in the number of studies conducted among Western countries impede the endorsement of the real value of coconut oil. Hence, long-term extensive studies with proper methodologies are suggested to clear all the controversies and misconceptions of coconut oil consumption. This review discusses the composition and functional properties of coconut oils extracted using various processing methods

    Discovery and refinement of loci associated with lipid levels.

    No full text
    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research
    corecore