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Genetic risk score and adiposity interact to influence
triglyceride levels in a cohort of Filipino women
N Zubair1, EJ Mayer-Davis2, MA Mendez2, KL Mohlke3, KE North4 and LS Adair2

BACKGROUND/OBJECTIVES: Individually, genetic variants only moderately influence cardiometabolic (CM) traits, such as lipid and
inflammatory markers. In this study we generated genetic risk scores from a combination of previously reported variants
influencing CM traits, and used these scores to explore how adiposity levels could mediate genetic contributions to CM traits.
SUBJECTS/METHODS: Participants included 1649 women from the 2005 Cebu Longitudinal Health and Nutrition Survey. Three
genetic risk scores were constructed for C-reactive protein (CRP), high-density lipoprotein cholesterol (HDL-C) and triglycerides
(TGs). We used linear regression models to assess the association between each genetic risk score and its related trait. We also
tested for interactions between each score and measures of adiposity.
RESULTS: Each genetic risk score explained a greater proportion of variance in trait levels than any individual genetic variant. We
found an interaction between the TG genetic risk score (2.29–14.34 risk alleles) and waist circumference (WC)
(Pinteraction¼ 1.66� 10� 2). Based on model predictions, for individuals with a higher TG genetic risk score (75th percentile¼ 12),
having an elevated WC (X80 cm) increased TG levels from 1.32 to 1.71 mmol l� 1. However, for individuals with a lower score (25th
percentile¼ 7), having an elevated WC did not significantly change TG levels.
CONCLUSIONS: The TG genetic risk score interacted with adiposity to synergistically influence TG levels. For individuals with a
genetic predisposition to elevated TG levels, our results suggest that reducing adiposity could possibly prevent further increases in
TG levels and thereby lessen the likelihood of adverse health outcomes such as cardiovascular disease.
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INTRODUCTION
Recent studies in both European and Asian cohorts have found
multiple genetic variants relating to cardiometabolic (CM) traits
such as lipid and inflammation levels.1–5 Individually, the identified
genetic variants only moderately influence these trait levels and
are thought to provide only limited information in clinically
assessing an individual’s risk. However, the combination of genetic
variants, each with a relatively small effect, may better explain the
variability of such complex traits.6 Thus, the use of a genetic risk
score has been proposed to better capture the effect of associated
genetic variants on trait variability of an individual.7–10

Genetic variants may interact with diet, environmental and
anthropometric factors to influence CM phenotypes; accounting
for synergistic effects may also help explain some of the variability
of these traits.6 Excess adiposity is one of the strongest predictors
of CM disease and risk.11–14 Previous work suggests that measures
of adiposity interact with specific genetic variants and predict CM
traits.15–17

However, synergistic effects are not well understood, especially
in low-middle-income populations undergoing rapid nutritional
and lifestyle changes. Coinciding with economic development and
urbanization, these changes include increased consumption of
fats, caloric sweeteners and meats, along with greater sedentary
behavior.18 Such lifestyle changes contribute to a growing burden
of overweight, visceral adiposity and thus associated CM
diseases.19,20 These concerns are especially pertinent for Asians;
compared with Caucasians, Asians have increased visceral

adiposity and greater insulin resistance at similar levels of body
mass index (BMI).21–23 In addition, the World Health Organization
concluded that the risk of CM-based diseases is elevated for Asians
with a BMI 423 kg m� 2, suggesting the use of a lower cutpoint
for overweight (OW).24

In this study we sought to: create genetic risk scores relating to
inflammatory and lipid traits, examine the ability of these scores to
explain the variation in such traits and test whether the genetic
risk scores interact with measures of adiposity to influence trait
levels. We chose to specifically look at C-reactive protein (CRP),
high-density lipoprotein cholesterol (HDL-C) and triglycerides
(TGs) because previous research suggests that these traits interact
with various measures of adiposity.25–27 To accomplish this, we
used an at-risk Asian population, from the 2005 Cebu Longitudinal
and Health and Nutrition Survey (CLHNS), undergoing a nutrition
and lifestyle transition. In particular, this cohort of women based in
the Philippines showed a sixfold increase in prevalence of
overweight and obesity associated with nearly 20 years of
substantial and continuing socioeconomic modernization.28 This
rapid transition allows us to capture changes one cannot capture
so readily in the United States.

SUBJECTS AND METHODS
Survey design
The women in this study are participants in the CLHNS that is described in
detail elsewhere.29 The CLHNS is a community-based cohort of women and
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their index children followed since 1983. In 2005, fasting blood was drawn for
biomarkers and genetics. Here we use cross-sectional data from the mother
cohort participating in the 2005 CLHNS. All data were collected under
conditions of informed consent with institutional review board approval from
the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA).

We excluded women who were pregnant at the time of blood draw, not
fasting at the time of blood draw and with CRP levels 495.24 nmol l� 1

(10 mg l� 1; a level representing current/recent illness rather than low-level
basal inflammation).30 A total of 1649 women had complete biomarker,
genetic, diet, socioeconomic and anthropometric data. Medication use in
this population was low: 0.1% took statins, 1.75% took diabetes medication
and 4% took antihypertensive medications. A sensitivity analysis showed
that exclusion of these individuals did not affect the results, and hence we
did not exclude anyone taking medication.

CM biomarkers
After a 12-h overnight fast, blood samples were collected using EDTA-
coated tubes. Frozen blood samples were shipped to the Emory Lipid
Research Laboratory (Atlanta, GA, USA) for lipid analysis. Total lipids were
measured by enzymatic methods using reagents from Beckman Diag-
nostics (Palo Alto, CA, USA) on a CX5 chemistry analyzer. HDL-C was
determined using the homogenous assay direct HDL-C (Genzyme
Corporation, Exton, PA, USA). CRP concentrations were determined using
a high-sensitivity immunoturbidimetric method (Synchron LX20, Beckman
Coulter, Inc., Brea, CA, USA, lower detection limit: 0.95 nmol l� 1).

The cutpoints used to define elevated risk for each trait were:
428.57 nmol l� 1 (3.0 mg l� 1) for CRP, o1.29 mmol l� 1 (50 mg dl� 1) for
HDL-C and 41.69 mmol l� 1 (150 mg dl� 1) for TG levels. These were based
on recommendations from the International Diabetes Federation (IDF) and
the American Heart Association.30–33

Anthropometry
Body weight, height and waist circumference (WC) were measured using
standard techniques.34 BMI was calculated as the ratio of weight (kg) to
height (m2). We used cutpoints for Asians to define normal weight as BMI
o23 kg m� 2, OW as 23 kg m� 2 p BMI o 27.5 kg m� 2, obese as BMI
X27.5 kg m� 2 and central adiposity as WC X80 cm.24,31

Dietary data
Dietary data were derived from two 24-h dietary recalls; mean energy and
mean saturated fat intake was used in the analyses. Data were collected
during in-home interviews performed by highly trained local field staff.

A nutritionist reviewed all dietary recalls immediately after collection.
When implausible values were found, interviewers revisited respondents
for verification. Energy and saturated fat intakes were calculated using the
Philippines Food Composition Tables.35,36

Sociodemographic and lifestyle characteristics
Highly trained interviewers collected reproductive history data; this
included menopausal status beginning in the 1991 survey.

Socioeconomic status was measured by a factor score based on a
principal components analysis of household ownership of key assets such
as television, vehicles and furniture.37

Infectious illness was measured by asking participants if they were
currently experiencing any symptoms of infection, consistent with prior
research on CRP.38 Symptoms included runny nose, cough, fever, diarrhea
and sore throat, as well as the more general categories of flu, cold and
sinusitis. Responses were used to construct a summary variable indicating
the presence or absence of any infectious symptoms at the time of blood
collection.

Environmental cleanliness and household hygiene was measured by a
hygiene score based on data on the interviewer’s rating of cooking area,
immediate area around the house, toilet type and water source. The score
ranges from 0 to 9, with larger values indicating greater cleanliness.38

Genotyping, quality controls and imputation
The complete methods for direct single-nucleotide polymorphism (SNP)
genotyping, quality control and SNP imputation have been described
previously.39 Briefly, genotyping was performed with the Affymetrix
Genome-Wide Human SNP Array 5.0 (Affymetrix, Inc., Santa Clara, CA,
USA). Quality control procedures excluded: samples with o97%
genotyping call rate; members of estimated first-degree relative pairs;
SNPs with a call rate o90%; SNPs with a deviation from Hardy–Weinberg
equilibrium (Po10� 6); SNPs with X3 discrepancies among duplicate pairs;
SNPs with Mendelian inheritance errors among five CEPH trios and/or
CEPH sample genotype discrepancies with HapMap. Genotype imputation
was conducted with MACH using phased haplotypes from the 1000
Genomes Project in both CEU and CHBþ JPT samples (June 2010
Release).40 In addition, we excluded any SNP with poor imputation
quality (MACH r2o0.3) or estimated minor allele frequency) p0.01.

Genetic marker selection
The process of choosing SNPs is depicted in Figure 1. The SNPs used to
create the genetic risk scores were selected by finding SNPs associated
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Figure 1. Choosing of genetic variants to include in the genetic risk scores. (a) Schematic representation describing the process of choosing
SNPs associated with CRP, HDL-C and TGs. Parentheses indicate the specific study population in which analyses were conducted. Numbers
refer to reference papers. The r2o0.3 indicates poor SNP imputation quality. *rs1268004 was not genotyped and no HapMap or 1000
Genomes imputed data were available. See Subjects and Methods for further details.
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with the individual CM traits of interest: CRP, HDL-C and TGs. We selected
these SNPs from (1) genome-wide association studies conducted with our
own study population,3,41 (2) published genome-wide association studies
of East and South East Asian cohorts1,42 and (3) published genome-wide
association studies of European descent cohorts,4 if the specific trait lacked
studies conducted in populations of Asian descent. We limited our
selection of studies to cohort-based studies and meta-analyses; case–
control studies were not considered because we wanted to choose SNPs
associated with the individual CM trait rather than disease state. From the
studies identified, we selected SNPs with a Po5� 10� 8 in the original
study population for further analysis; we increased this threshold to a
Po5� 10� 5 for those studies conducted in our own study population
because of the smaller sample size in the CLHNS.

The original studies were used to identify the risk allele. We designated
the risk allele as the allele associated with an increased level of
the specified trait, except in the case of HDL-C, for which we assigned
the allele associated with lower levels of the trait. We coded SNPs
as the number of copies of the risk allele (a continuous number between
0 and 2).

Three genetic risk scores were constructed, one for each CM trait, CRP,
HDL-C, and TG. Before creating each genetic risk score, we chose a subset
of SNPs with nominal significance (Po0.1) and directional consistency of
the effect estimate in our study population. This was based on adjusted
linear regression models of the natural log-transformed CM trait on the
individual SNP (see model 2 in Subjects and methods). Then, for each CM
trait, we pruned this subset of SNPs for redundancy because of linkage
disequilibrium (r2 40.2). To do this we first used the clump procedure in
PLINK to create ‘clumps’ of correlated SNPs.43 Each clump was represented
by the index SNP, designated as the SNP with the lowest P-value (see
model 2 in Subjects and methods). Using these index SNPs, we calculated
each genetic risk score by summing the risk alleles of each index SNP
associated with the specific trait. We created an unweighted score instead
of weighting by the effect of each SNP because: (1) the current literature
does not provide stable effect estimates of each SNP for each trait; (2) the
outcomes (and thus effects) across studies were noncomparable (for
example, log-transformed trait vs nontransformed trait); (3) studies used
populations of various sample sizes and ethnicities; and (4) using weights
from the CLHNS data itself would have introduced bias.

Statistical analysis
Linear regression models, with each of the three CM traits as a continuous
outcome, were used. All traits were natural log-transformed to satisfy
model assumptions of normally distributed residuals. Given the markedly
skewed distribution of CRP concentrations and the presence of many
values below the detectable level (0.95 nmol l� 1), CRP values were natural
log-transformed after adding the constant 0.95.

We constructed principal components (PCs) using the software
EIGENSOFT to capture population substructure among CLHNS subjects.44

We assessed the association between each of the first 10 PCs and each
log-transformed CM trait to identify any potential ancestry explanatory PC;
the 7th PC was significantly associated with CRP and HDL-C (no PCs were
significantly associated with log TG levels), and thus the first 7 PCs were
included as covariates in the linear regression models.

Two different models were examined; in both models the outcome was
either log-transformed CRP, HDL-C and TG levels. Model 1 was a linear
regression model adjusted for age (categorical: p44, 45–49, 50–54 and
X55 years) and population substructure. Model 2 included covariates
adjusted for in model 1 plus additional adjustment for postmenopausal
status (yes/no), OW/obese status (BMI X23 kg m� 2), high WC (WC
X80 cm), % energy intake from saturated fat, energy intake, environ-
mental hygiene, reported infectious illness (yes/no) and socioeconomic
status. The covariates chosen for adjustment in model 2 were based on
prior published studies in the CLHNS on these lipid and inflammatory
traits.37,38,45 We categorized age, BMI and WC to account for their
nonlinear relationship with the log CM trait levels.

Models 1 and 2 were applied to test for the association between
each candidate SNP and its related log-transformed CM trait (assuming
an additive genetic model). Then both models were applied to test
for the association between each genetic risk score (continuous)
and its related log-transformed CM trait. In addition, we examined the
proportion of variance explained (Rsq) in the log-transformed CM trait by
the genetic risk score vs the most strongly associated individual SNP in
model 2 (see online-only Supplementary Table S1 and Supplementary
Methods).

Finally, for each CM trait we looked at interactions between the genetic
risk score and measures of adiposity. We examined a genetic risk score�
elevated WC interaction, both unadjusted and adjusted for BMI (using a
three-categorical dummy variable for normal weight, OW and obese). We
adjusted for BMI to better isolate visceral fat’s effect on CM trait levels.
Then we examined a genetic risk score�OW/obese status interaction,
both unadjusted and adjusted for elevated WC. We adjusted for WC to
better examine how overall fatness (regardless of fat distribution around
the waist) influences CM trait levels. Each interaction was looked at
separately while adjusting for the same covariates as model 2.

For regression analyses we used a statistical significance criteria of
Po0.05 (two sided). For interaction terms we considered Po0.1 as
nominally significant. After applying a Bonferroni correction for three
independent tests, these significance criteria became Po0.033. All
regression analyses were performed with Stata 12.0 (Stata Corporation,
College Station, TX, USA).

RESULTS
The characteristics of 1649 women participants in the 2005 CLHNS
are presented in Table 1. In 2005, participants had a mean (s.d.)
age of 48.41 (6.03) years. Approximately 39% of women were
postmenopausal, 52% had elevated WC, 60% were OW, 20% had
elevated CRP, 82% had low HDL-C and 29% had elevated TGs.

Our selection strategy for candidate SNPs relating to CRP, HDL-C
and TGs resulted in 46, 19 and 13 usable variants (Figure 1). After
pruning to eliminate correlated SNPs in linkage disequilibrium
(by trait), 6 CRP, 9 HDL-C and 9 TG index SNPs were used
in the construction of the genetic risk scores (Figure 1 and
Supplementary Table S2). Among participants, each genetic risk
score was normally distributed (Supplementary Figure S1). The
mean score (s.d.) and range of number of risk alleles for CRP was
3.32 (1.37) with a range from 0.12 to 8.51; for HDL-C it was 5.95
(1.58) with a range from 1.61 to 11.66; and for it was TG 9.42 (1.85)
with a range from 2.29 to 14.34.

The regression results from model 2 for each candidate SNP and
its respective CM trait are shown in Supplementary Table S2
(results from model 1 were similar and thus not shown).

Table 1. Characteristics of 1649 women participants in the 2005
CLHNS

Age (%)
p44 Years 32.44
45–49 Years 31.53
50–54 Years 20.92
X55 Years 15.10

Postmenopausal (%) 38.51
Illnessa (%) 27.53
Energy intake (kJ) 4722.78±2057.56
% Energy intake from saturated fat 5.39±4.10
WC (cm) 81.05±10.87
Elevated WCb (%) 52.40
Body mass index (kgm� 2) 24.32±4.33
Overweightc (%) 38.69
Obesed (%) 21.22
CRP (nmol l� 1) 16.38±20.29
Elevated CRPe (%) 19.65
HDL (mmol l� 1) 1.06±0.27
Low HDL-Cf (%) 82.35
TGs (mmol l� 1) 1.48±0.96
Elevated TGsg (%) 28.81

Abbreviations: CLHNS, Cebu Longitudinal and Health and Nutrition Survey;
CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; TG,
triglyceride; WC, waist circumference. Data are means±s.d. or percentages.
aPercentage of individuals reporting illness at the time of blood draw. bWC
X80 cm. cOverweight: 23 kgm� 2 pbody mass index (BMI)o27.5 kgm� 2.
dObese: BMI X27.5 kgm� 2. eCRP 428.57 nmol l� 1. fHDL o1.29mmol l� 1.
gTGs 41.69mmol l� 1.
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Using model 2, the individual SNP most strongly associated with
CRP was rs876537 at the CRP loci (b¼ 0.33, 95% confidence interval
(CI) 0.24, 0.42, P¼ 2.27� 10� 12), with HDL-C it was rs12708980 at
the CETP loci (b¼ � 0.05, 95% CI � 0.08, � 0.03, P¼ 6.61� 10� 7),
and with TG it was rs964184 at the APOC3 loci (b¼ 0.15, 95% CI 0.11,
0.19, P¼ 3.37� 10� 15). The same SNPs were found to be most
strongly associated with each trait in model 1 as well.

As expected, each of the three genetic risk scores was
associated with its respective log-transformed trait (Table 2).
Specifically in model 2, each additional CRP risk allele resulted in
an estimated 18% increase in CRP levels (b¼ 0.18, 95% CI 0.14,
0.23); each additional HDL-C risk allele resulted in an estimated 4%
decrease in HDL-C levels (b¼ � 0.04, 95% CI � 0.05, � 0.04);
each additional TG risk allele resulted in an estimated 7% increase
in TG levels (b¼ 0.07, 95% CI 0.06, 0.08).

We compared the proportion of variance explained (Rsq) in the
log-transformed CM trait by the genetic risk score vs the most
strongly associated individual SNP in model 2 (Figure 2). For all
three traits, Rsq of genetic risk score 4Rsq of individual SNP;
B4% of log CRP levels, 7% of log HDL-C levels and 6% of log TG
levels were explained by the genetic risk score alone (Table 2).

We found significant interactions between measures of
adiposity and the TG genetic risk score on log TG levels, whereas
we found no evidence of such interactions on log CRP or log
HDL-C levels (Supplementary Tables S3 and S4).

Stratifying by normal WC (o80 cm) and elevated WC (X80 cm),
the estimated % increase in TG levels for each additional TG risk
allele was 5% (b¼ 0.05, 95% CI 0.03, 0.07) in normal WC
individuals, but increased to 8% (b¼ 0.08, 95% CI 0.06, 0.10) in
elevated WC individuals (Pinteraction¼ 1.66� 10� 2; Table 3). Here
we present BMI-adjusted results; we found no difference between
the effect estimate and P-value of the unadjusted model (results
not shown).

Similarly, stratifying by normal weight (o23 kg m� 2) and OW/
obese (X23 kg m� 2), the estimated % increase in TG levels for
each additional TG risk allele was 5% (b¼ 0.05, 95% CI 0.03, 0.07)
in normal-weight individuals, but increased to 8% (b¼ 0.08, 95%
CI 0.06, 0.09) in OW/obese individuals (Pinteraction¼ 2.73� 10� 2;
Table 3). Here we present WC-adjusted results; we found no
difference between the effect estimate and P-value of the
unadjusted model (results not shown).

To better visualize these interactions (Figure 3), we predicted TG
levels at the 25th and 75th percentile values of the genetic risk
score (7 and 12, respectively) at varying levels of adiposity while
holding all other covariates in model 2 at the mean. Based on
model predictions, for individuals with a higher TG genetic risk
score (¼ 12), having an elevated WC (X80 cm) increased TG levels
from 1.32 to 1.71 mmol l� 1. However, for individuals with a lower
score (¼ 7), having an elevated WC made no significant impact on
TG levels (1.05 vs 1.18 mmol l� 1). Similar results were seen at
varying levels of BMI.

We also examined all the above interactions with each
individual SNP included in the TG genetic risk score, but none
of these interactions were significant (results not shown).

DISCUSSION
In this study we used a genetic risk score to combine the relatively
small additive effects of individual SNPs to better capture the
complex relationship between genetics, adiposity and CM risk. We
found that the genetic risk score more strongly predicted log-
transformed CRP, HDL-C and TG levels than any individual SNP. In
addition, the genetic risk score explained a greater proportion of
variance in the specified trait than any given individual SNP.
Finally, we found that for individuals with a higher TG genetic risk
score, having either an elevated WC or being OW/obese amplified
the genetic risk score’s effect by further increasing TG levels.
However, for individuals with a lower TG genetic risk score,
measures of adiposity made almost no difference in TG levels.
Interestingly, for those women with a low TG genetic risk score
and elevated levels of adiposity, their predicted levels of TG
equaled those of women with a high genetic risk score without
any adverse levels of adiposity. Overall, these results demonstrate
that combinations of multiple genetic loci better explain the
variation in CRP, HDL-C and TG levels and that the TG genetic risk
score seemed to interact with measures of adiposity to influence
TG levels in this study population.

In support of our results, recent work using the same study
population found that central obesity might accentuate the effect
of the TG-increasing allele of an APOA5 variant.3 In addition,
previous research has implicated several variants in the LPL
gene (a gene included in our genetic risk score) as having an

Table 2. Association of genetic risk scores with log-transformed cardiometabolic trait levels in 1649 women

Genetic risk score b 95% CI P-value R2 R2 (genetic risk score alone)a

CRP genetic risk score 0.19 0.15 0.23 4.81E� 20 0.22 0.04
HDL-C genetic risk score � 0.04 � 0.05 � 0.04 1.81E� 29 0.14 0.07
TG genetic risk score 0.07 0.06 0.08 3.38E� 28 0.18 0.06

Abbreviations: CI, confidence interval; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride. Association results from model 2;
covariates were age, principal components, postmenopausal status, overweight/obese status, elevated waist circumference, % energy intake from saturated
fat, energy intake, environmental hygiene, illness and socioeconomic status (outcome was the related log-transformed trait). aProportion of variance explained
by the genetic risk score alone (see Subjects and Methods).
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Figure 2. The proportion of variance explained by genetic risk score
vs individual genetic variant most strongly associated with trait. The
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with the trait. The individual SNP most strongly associated with CRP
was rs876537, with HDL-C was rs12708980 and with TGs was
rs964184.
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interactive effect with central adiposity on TG levels and the ratio
of TG to HDL-C.25,26 However, we did not find significant
interactions between these individual loci and adiposity on TG

levels, perhaps indicating that the interactive effect is driven by a
collective result of all SNPs in the TG genetic risk score.

We observed that both WC (adjusted for BMI) and OW/obese
(adjusted for WC) interacted significantly with the TG genetic risk
score. This suggests that visceral adiposity (as proxied by WC) and
overall fatness both strengthen the effect of the genetic risk score
on TG levels. However, it is interesting to note that the residuals of
WC regressed on BMI also significantly interacted with the TG
genetic risk score (results not shown). Previous studies have
implicated visceral adiposity as a stronger predictor of TG levels
and hypertriglyceridemia compared with subcutaneous adipose
tissue.46,47

From a clinical perspective, individuals with both a high TG
genetic risk score and elevated WC had predicted TG levels that
meet the American Heart Association’s level of ‘borderline high
risk’ (1.69 mmol l� 1 or 150 mg dl� 1).32 This combination of
elevated WC along with increased TG levels has been previously
described as the ‘hypertriglyceridemic waist’ phenotype.
Individuals with this phenotype have a higher risk of increased
visceral adiposity, CVD, insulin resistance and other related
outcomes.13,48–50 This is of particular concern for Asian
populations, for whom increased levels of visceral adiposity are
present at normal BMIs.21–23 However, it is not clear how to
specifically reduce visceral adiposity using lifestyle and diet
modifications. Our results suggest that reducing overall fatness
may also lessen the genetic risk score’s effects on TG levels. Work
from Pollin et al.51 reinforces this concept by finding that an
intensive lifestyle intervention that focused on weight loss
appeared to partially mitigate the effect of the rs1260326 risk
allele in the GCKR gene (a locus included in our genetic risk score)
on higher TG levels. Further research, especially clinical trials in
larger populations, is needed to know whether such weight loss
interventions could be useful, especially across different
ethnicities and different genetic risk profiles.

Limitations of our study merit consideration. In our literature
search we found differing numbers of candidate SNPs for each
trait. Although we used the same criteria in our search regardless
of the CM trait, the variation in the number of candidate SNPs
could reflect the current state of the literature. In addition, there is
concern with choosing SNPs from a European sample and
applying them to an Asian sample, especially in terms of tagging
the appropriate functional variant. We tried to mitigate this
by choosing SNPs with nominal significance and directional
consistent effect estimates in our study population; however,
because of the limited sample size in the CLHNS we may have
lacked the power to detect the SNPs true effect. In addition, using
a threshold of r2 o0.2 for linkage disequilibrium still allows SNPs

Table 3. Evidence of interaction between TG genetic risk score and levels of adiposity on log-transformed TGs

Normal WCa n¼ 785 Elevated WCa n¼ 864

b 95% CI P-value b 95% CI P-value Pinteraction
b

TG genetic risk score 0.05 0.03 0.07 1.02E� 08 0.08 0.06 0.1 4.96E� 22 1.66E� 02

Normal weightc n¼ 661 Overweight and obesec n¼ 988

b 95% CI P-value b 95% CI P-value Pinteraction
d

TG genetic risk score 0.05 0.03 0.07 3.21E� 07 0.08 0.06 0.09 5.21E� 24 2.73E� 02

Abbreviations: CI, confidence interval; TG, triglyceride; WC, waist circumference. Association results from model 2; covariates were age, principal components,
postmenopausal status, overweight/obese status, elevated waist circumference, % energy intake from saturated fat, energy intake, environmental hygiene,
illness and socioeconomic status: outcome was log-transformed triglycerides (TG). aStratified by normal WC o80 cm and elevated WC X80 cm; additional
model adjustment for normal weight, overweight and obese body mass index (BMI) categories. bP-value for WC interaction in unstratified model. cStratified by
normal weight: BMI o23 kgm� 2 and overweight/obese: BMIX23 kgm� 2; additional model adjustment for elevated WC. dP-value for overweight/obese
interaction in unstratified model.
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Figure 3. Predicted TG levels at the 25th and 75th percentile values
of the genetic risk score, stratified by levels of adiposity. Predicted
geometric means (95% CI) of TGs at the 25th and 75th percentile
values of the genetic risk score (7 and 12, respectively) at varying
levels of WC and BMI: (a) Predicted levels of TG stratified by WC
X80 cm. (b) Predicted levels of TG stratified by overweight/obese
(BMI X23 kgm� 2).
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to partially tag the same underlying signal, potentially including
some redundancy in the genetic risk score. Although we used an
unweighted approach to create our genetic risk scores, it may be
possible in the future to obtain stable and accurate estimates of
genetic variants for use in a weighted risk score that could
improve predictability of CM risk.

In conclusion, using a study population of middle-aged Filipino
women undergoing a nutrition and lifestyle transition, we found
that CRP, HDL-C and TG genetic risk scores explained a greater
variance of the associated trait compared with a single SNP. We
also found that the TG genetic risk score interacted with adiposity
to synergistically influence TG levels. For individuals with a high
genetic predisposition to elevated TG levels, our results suggest
that reducing adiposity could possibly prevent increases in TG
levels and thereby reduce the likelihood of adverse health
outcomes such as CM diseases. Replication of these results in
larger study populations is needed to support the potential clinical
and public health utility of targeted prevention efforts using
genetic profiling.
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