25 research outputs found

    Exome Sequence association Study of Levels and Longitudinal Change of Cardiovascular Risk Factor Phenotypes in European americans and african americans From the atherosclerosis Risk in Communities Study

    Get PDF
    Cardiovascular disease (CVD) is responsible for 31% of all deaths worldwide. Among CVD risk factors are age, race, increased systolic blood pressure (BP), and dyslipidemia. Both BP and blood lipids levels change with age, with a dose-dependent relationship between the cumulative exposure to hyperlipidemia and the risk of CVD. We performed an exome sequence association study using longitudinal data with up to 7805 European Americans (EAs) and 3171 African Americans (AAs) from the Atherosclerosis Risk in Communities (ARIC) study. We assessed associations of common (minor allele frequency \u3e 5%) nonsynonymous and splice-site variants and gene-based sets of rare variants with levels and with longitudinal change of seven CVD risk factor phenotypes (BP traits: systolic BP, diastolic BP, pulse pressure; lipids traits: triglycerides, total cholesterol, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C]). Furthermore, we investigated the relationship of the identified variants and genes with select CVD endpoints. We identified two novel genes: DCLK3 associated with the change of HDL-C levels in AAs and RAB7L1 associated with the change of LDL-C levels in EAs. RAB7L1 is further associated with an increased risk of heart failure in ARIC EAs. Investigation of the contribution of genetic factors to the longitudinal change of CVD risk factor phenotypes promotes our understanding of the etiology of CVD outcomes, stressing the importance of incorporating the longitudinal structure of the cohort data in future analyses

    DeltaNp63alpha-Mediated Induction of Epidermal Growth Factor Receptor Promotes Pancreatic Cancer Cell Growth and Chemoresistance

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to current chemotherapy regimens, in part due to alterations in the p53 tumor suppressor pathway. p53 homolog p63 is a transcription factor essential for the development and differentiation of epithelial surfaces. However its function in cancer is controversial and its role in PDAC is not known. We discovered that ΔNp63α was the predominantly expressed p63 variant in pancreatic cancer cell lines. ΔNp63α protein and mRNA levels were high in T3M4, BxPC3 and COLO-357 pancreatic cancer cells and low in ASPC-1 and PANC-1 cells. Overexpression of ΔNp63α in PANC-1 cells and shRNA-mediated knockdown in T3M4 cells indicated that ΔNp63α promoted anchorage-dependent and -independent growth, motility and invasion, and enhanced resistance to cisplatin-induced apoptosis. Epidermal growth factor receptor (EGFR) signaling pathways contribute to the biological aggressiveness of PDAC, and we found that the motogenic effects of ΔNp63α were augmented in presence of EGF. Ectopic expression of ΔNp63α resulted in upregulation of EGFR and β1-integrin in PANC-1 cells. Conversely, ΔNp63α knockdown had an opposite effect in T3M4 cells. ΔNp63α potentiated EGF-mediated activation of ERK, Akt and JNK signaling. Chromatin immunoprecipitation and functional reporter assays demonstrated that ΔNp63α activated EGFR transcription. 14-3-3σ transcription was also positively regulated by ΔNp63α and we have previously shown that 14-3-3σ contributes to chemoresistance in pancreatic cancer cell lines. Conversely, shRNA-mediated knockdown of 14-3-3σ led to abrogation of the ΔNp63α effects on cell proliferation and invasion. Thus, p53 homolog ΔNp63α enhances the oncogenic potential of pancreatic cancer cells through trans-activation of EGFR and 14-3-3σ

    Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies.

    Get PDF
    Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels

    Genome-Wide association Study of Serum Metabolites in the african american Study of Kidney Disease and Hypertension

    Get PDF
    The genome-wide association study (GWAS) is a powerful means to study genetic determinants of disease traits and generate insights into disease pathophysiology. to date, few GWAS of circulating metabolite levels have been performed in African Americans with chronic kidney disease. Hypothesizing that novel genetic-metabolite associations may be identified in a unique population of African Americans with a lower glomerular filtration rate (GFR), we conducted a GWAS of 652 serum metabolites in 619 participants (mean measured glomerular filtration rate 45 mL/min/1.73

    A Genome-Wide association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value \u3c 1.2 × 1

    Whole-Genome Sequencing analysis of Human Metabolome in Multi-Ethnic Populations

    Get PDF
    Circulating metabolite levels may reflect the state of the human organism in health and disease, however, the genetic architecture of metabolites is not fully understood. We have performed a whole-genome sequencing association analysis of both common and rare variants in up to 11,840 multi-ethnic participants from five studies with up to 1666 circulating metabolites. We have discovered 1985 novel variant-metabolite associations, and validated 761 locus-metabolite associations reported previously. Seventy-nine novel variant-metabolite associations have been replicated, including three genetic loci located on the X chromosome that have demonstrated its involvement in metabolic regulation. Gene-based analysis have provided further support for seven metabolite-replicated loci pairs and their biologically plausible genes. Among those novel replicated variant-metabolite pairs, follow-up analyses have revealed that 26 metabolites have colocalized with 21 tissues, seven metabolite-disease outcome associations have been putatively causal, and 7 metabolites might be regulated by plasma protein levels. Our results have depicted the genetic contribution to circulating metabolite levels, providing additional insights into understanding human disease

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. There are 286 authors of this articles not all are listed in this record
    corecore