90 research outputs found

    Rare earth spin ensemble magnetically coupled to a superconducting resonator

    Get PDF
    Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum communication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er3+^{3+} spins doped in Y2_{2}SiO5_{5} crystal to a high-Q coplanar superconducting resonator.Comment: 5 pages, 3 figure

    Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT

    Get PDF
    FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form

    Acenaphthenoannulation Induced by the Dual Lewis Acidity of Alumina

    Get PDF
    We have discovered a dual (i. e., soft and hard) Lewis acidity of alumina that enables rapid one-pot π-extension through the activation of terminal alkynes followed by C−F activation. The tandem reaction introduces an acenaphthene fragment – an essential moiety of geodesic polyarenes. This reaction provides quick access to elusive non-alternant polyarenes such as π-extended buckybowls and helicenes through three-point annulation of the 1-(2-ethynyl-6-fluorophenyl)naphthalene moiety. The versatility of the developed method was demonstrated by the synthesis of unprecedented structural fragments of elusive geodesic graphene nanoribbons

    Coherent frequency conversion in a superconducting artificial atom with two internal degrees of freedom

    Full text link
    By adding a large inductance in a dc-SQUID phase qubit loop, one decouples the junctions' dynamics and creates a superconducting artificial atom with two internal degrees of freedom. In addition to the usual symmetric plasma mode ({\it s}-mode) which gives rise to the phase qubit, an anti-symmetric mode ({\it a}-mode) appears. These two modes can be described by two anharmonic oscillators with eigenstates ns\ket{n_{s}} and na\ket{n_{a}} for the {\it s} and {\it a}-mode, respectively. We show that a strong nonlinear coupling between the modes leads to a large energy splitting between states 0s,1a\ket{0_{s},1_{a}} and 2s,0a\ket{2_{s},0_{a}}. Finally, coherent frequency conversion is observed via free oscillations between the states 0s,1a\ket{0_{s},1_{a}} and 2s,0a\ket{2_{s},0_{a}}

    Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions

    Full text link
    We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to \pi-coupling is observed for a thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The magnetic field dependence of the \pi-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.Comment: 15 pages, 9 figure

    Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    Get PDF
    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells

    Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons

    Get PDF
    The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250°C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis
    corecore