59 research outputs found

    A novel method for validating multi-classifiers. A case study for ICF-based health status classification

    Get PDF
    In this paper, we propose a novel method for the validation of a multi-classification model according to the intended use and aim of a device for health status classification and the clinical needs of the practitioners involved

    N-nonyloxypentyl-l-deoxynojirimycin inhibits growth, biofilm formation and virulence factors expression of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is one of the major causes of hospital-and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d-and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 µg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin-and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes

    Prikaz znanja u internetu stvari: semantičko modeliranje i njegove primjene

    Get PDF
    Semantic modelling provides a potential basis for interoperating among different systems and applications in the Internet of Things (IoT). However, current work has mostly focused on IoT resource management while not on the access and utilisation of information generated by the “Things”. We present the design of a comprehensive and lightweight semantic description model for knowledge representation in the IoT domain. The design follows the widely recognised best practices in knowledge engineering and ontology modelling. Users are allowed to extend the model by linking to external ontologies, knowledge bases or existing linked data. Scalable access to IoT services and resources is achieved through a distributed, semantic storage design. The usefulness of the model is also illustrated through an IoT service discovery method.Semantičko modeliranje pruža potencijalnu osnovu za me.udjelovanje različitih sustava i aplikacija unutar interneta stvari (IoT). Međutim, postojeći radovi uglavnom su fokusirani na upravljanje IoT resursima, ali ne i pristupu i korištenju informacija koje generira “stvar”. Predstavljamo projektiranje sveobuhvatnog i laganog semantičkog opisnog modela za prikaz znanja u IoT domeni. Projektiranje slijedi široko-priznate najbolje običaje u inženjerstvu znanja i ontološkom modeliranju. Korisnicima se dopušta proširenje modela povezivanjem na eksterne ontologije, baze znanja ili postoje će povezane podatke. Skalabilni pristup IoT uslugama i resursima postiže se kroz distribuirano, semantičko projektiranje pohrane. Upotrebljivost modela tako.er je ilustrirana kroz metodu pronalaska IoT usluga

    Activating Generalized Fuzzy Implications from Galois Connections

    Get PDF
    This paper deals with the relation between fuzzy implications and Galois connections, trying to raise the awareness that the fuzzy implications are indispensable to generalise Formal Concept Analysis. The concrete goal of the paper is to make evident that Galois connections, which are at the heart of some of the generalizations of Formal Concept Analysis, can be interpreted as fuzzy incidents. Thus knowledge processing, discovery, exploration and visualization as well as data mining are new research areas for fuzzy implications as they are areas where Formal Concept Analysis has a niche.F.J. Valverde-Albacete—was partially supported by EU FP7 project LiMoSINe, (contract 288024). C. Peláez-Moreno—was partially supported by the Spanish Government-CICYT project 2011-268007/TEC.Publicad

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015

    Guided waves in a composite winglet structure: Numerical and experimental investigations

    No full text
    The paper deals with numerical and experimental investigations aimed to develop a Finite Element (FE) model for predicting wave propagation in a blended composite winglet. Material anisotropy, inhomogeneity, multi-layered configuration and complex geometries tend to increase the complexity of the wave propagation phenomena and consequently the development of established FE models. Moreover, even if 2D finite elements seem to be not appropriate for modelling guided waves propagation, especially for complex anisotropic structural components, they are more attractive than 3D ones, because of the computational cost saving. For this reason, part of the presented research activity is addressed to investigate the efficiency of shell finite elements in modelling guided waves propagation in a such complex structure as a winglet. The development of an efficient model depends also on the numerical characterization of the medium within which guided waves propagate through. As a consequence, preliminary simple experimental bending and modal tests have been carried out to support the material properties modelling. Subsequently, guided wave propagation FE analyses were performed and the results compared with provided experimental data. A good agreement between numerical and experimental results of the different analyses has been achieved in terms of both signal time of flight and amplitudes

    Guided wave SHM system for damage detection in complex composite structure

    No full text
    The paper deals with the development of a Finite Element (FE) model aimed to simulate the propagation mechanisms of guided waves in a complex composite structure, such as a blended Glass Fibre Reinforced Polymers (GFRP) winglet, for real-time damage detection and monitoring purposes. The reliability of the herein presented FE model has been assessed against an experimental tests campaign, involving the winglet under both reference/pristine configuration and impacted/damaged configuration, also changing the actuator location. Because of the good level of accuracy shown by the numerical-experimental comparisons, the FE model has been used also for numerically investigating new actuators and damage position configurations, not experimentally analysed. Damage Indexes (DI’s) have been calculated to quantify the variations of the signals’ amplitude caused by the induced damage. Moreover, the Probability Ellipse (PE) method, which estimates the probability of the presence of the damage in the monitored area starting from the knowledge of selected DI’s for each sensors-path, has been used in both older and newer damage position. The accuracy of the PE method in detecting the damage location is herein discussed

    Numerical simulation of guided waves propagation in loaded composite structures

    Get PDF
    It is well known that Lamb waves based Structural Health Monitoring (SHM) systems have been founding increasing application for damage tolerant composite structures, thanks to the high sensitivity they offer in terms of damage detection, improvement of the design current practice and reduction of the maintenance and inspection costs. However, further investigations are still mandatory for the application of SHM systems on composite structures. Dispersion and slowness phenomena, together with boundary condition scattered waves may mask the presence of damages. In addition, the in-service loads may alter the guided waves propagation mechanisms, affecting negatively the sensitivity to damage detection of such systems. As a result, the development of numerical models aimed to simulate the propagation of guided waves may be helpful for designers to reduce such critical aspects, by allowing virtually investigating different sensors location and different SHM system operating parameters. The novelty of this paper can be found in the development of a Finite Element (FE) model for the simulation of ultrasonic guided waves in a pre-loaded composite structure. Results are herein discussed and the effects of the initial stress-strain state on the guided waves analysed

    Probability ellipse method for damage detection in a composite winglet

    No full text
    It is well known that composite materials are founding increasing applications in the transport field thanks to their high strength to mass ratio. However, their use in primary structures is very challenging because of their high sensitivity to in-service damages and manufacturing defects. As a result, the current adopted damage tolerance approach leads to the oversizing of such structures. Structural health monitoring systems, aimed to the real time damage detection, can provide several benefits in terms of lightweight of the structures, maintenance operations and inspection costs. This paper deals with the use of the Probability Ellipse (PE) method, based on the propagation of ultrasonic guided waves on a composite winglet of a small aircraft. The PE method estimates the probability of the presence of the damage in the monitored area, starting from the knowledge of selected damage indexes for each sensors-path. The winglet, equipped with piezoelectric sensors, usable as both actuating and receiving devices, has been numerically and experimentally investigated under several configurations, varying the actuator location. Sensitivity analysis has been performed to assess the effectiveness of the PE method. The accuracy of the PE method in detecting both location and damaged area is herein discussed
    corecore