6,133 research outputs found

    Underground measurements on secondary cosmic rays

    Get PDF
    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays

    Long-term modulation of cosmic rays during solar cycle 21

    Get PDF
    A preliminary result concerning the rigidity dependence of the longer-term solar cycle modulation is reported. The long-term modulation, using monthly mean intensities and referred to November 1977 as a normalizing level, appear to be in accordance with the exponent gamma = 1, provided only Brisbane and Hobart data are used. Darwin data do not conform to this pattern except perhaps during the early years of the cycle until about the end of 1980, since when the Darwin long-term intensity has been largely steady, apart from Forbush-type decreases and the as yet unidentified vector from the observed SI vector. The true SI vector of galactic origin can be obtained. The resultant vector has the amplitude of 0.031% and the phase of 2.3h. The present result seems to be consistent with those so far reported

    Energetic solar particle events

    Get PDF
    Studies of the arrival directions of energetic solar particles during ground level enhancements (CLE's) observed by neutron monitors have shown that, in general, in the first hour of the event most of the particles arrive with a distribution of pitch angles peaked about the garden hose field direction in the vicinity of Earth. During the first hour some of the particles arrive from the antisolar direction, while in later stages of the event the intensity becomes more nearly isotropic as a result of scattering of particles in interplanetary space. An attempt is made to determine the arrival directions of the particles during the early stages of the GLE of 16 February 1984 using the data currently available from high latitude neutron monitors near sea level where the cut off is essentially atmospheric (approx. LGV)

    Sidereal variations deep underground in Tasmania

    Get PDF
    Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies

    Atmospheric effects on the underground muon intensity

    Get PDF
    It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin

    The effect of the interplanetary magnetic field on sidereal variations observed at medium depth underground detectors

    Get PDF
    It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it

    A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    Get PDF
    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application

    Breakdown of weak-field magnetotransport at a metallic quantum critical point

    Full text link
    We show how the collapse of an energy scale in a quantum critical metal can lead to physics beyond the weak-field limit usually used to compute transport quantities. For a density-wave transition we show that the presence of a finite magnetic field at the critical point leads to discontinuities in the transport coefficients as temperature tends to zero. The origin of these discontinuities lies in the breakdown of the weak field Jones-Zener expansion which has previously been used to argue that magneto-transport coefficients are continuous at simple quantum critical points. The presence of potential scattering and magnetic breakdown rounds the discontinuities over a window determined by tau Delta < 1 where Delta is the order parameter and tau is the quasiparticle elastic lifetime.Comment: 4 pages, 3 figures RevTeX forma
    • …
    corecore