55 research outputs found

    Survivin as potential mediator to support autoreactive cell survival in myasthenia gravis: A human and animal model study

    Get PDF
    The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders

    The presence of survivin on B cells from myasthenia gravis patients and the potential of an antibody to a modified survivin peptide to alleviate weakness in an animal model

    No full text
    Myasthenia gravis (MG) is an autoimmune disease in which Abs target neuromuscular junction proteins, in particular the acetylcholine receptor. We previously identified the antiapoptotic protein survivin in the autoreactive B cells and plasma cells of MG patients. To further define the role of survivin in MG, we have assessed PBMCs from 29 patients with MG and 15 controls. We confirmed the increased expression of survivin in CD20+ lymphocytes from MG patients compared with controls. Furthermore, the CD20+ population of cells from MG patients contained a higher percentage of extracellular survivin compared with controls. The analysis of CD4+ cells showed an increased percentage of intracellular survivin in MG patients compared with controls, whereas the extracellular survivin CD4+ percentage was unaffected. In an experimental mouse model of MG, we assessed the therapeutic potential of an Ab raised to a modified survivin peptide but cross-reactive to survivin. Ab treatment reduced disease severity, lowered acetylcholine receptor-specific Abs, and decreased CD19+ survivin+ splenocytes. The ability to target survivin through Ab recognition of autoreactive cells offers the potential for a highly specific therapeutic agent for MG

    Immunization with a Mimotope of GD2 Ganglioside Induces CD8 +

    No full text
    The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(−) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags

    Immunization with a mimotope of GD2 ganglioside induces CD8^{+} T cells that recognize cell adhesion molecules on tumor cells

    No full text
    The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(−) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags

    Survivin as a Potential Mediator to Support Autoreactive Cell Survival in Myasthenia Gravis: A Human and Animal Model Study

    Get PDF
    <div><p>The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders.</p></div

    Acetylcholine receptor alpha peptide binding to survivin positive cells in myasthenics by five color FACS analysis.

    No full text
    <p>A) FITC labeled AChR-alpha subunit peptide binding to total myasthenic PBMC (0.44%), B) Excess unlabeled AChR-alpha subunit peptide followed by competitive binding of FITC-AChR peptide (0.03%). C) Control PBMC, subject number 19, (SVN+/CD38+/CD138+/CD20+ gated sub-population) showing FITC-AChR-alpha subunit peptide binding (0.33% of gated cells). D–F; Myasthenic patient PBMC (SVN+/CD38+/CD138+/CD20+ gated sub-population) showing FITC-AChR-alpha subunit peptide binding (1.55% (pt#10), 6.54% (pt#15) and 2.50% (pt#14) of total gated cells; <i>n</i> = 3).</p

    Demographic and treatment characteristics of myasthenic patients (1–15) and controls (16–25) consisting of individuals with non-myasthenic neurologic conditions.

    No full text
    <p>Demographic and treatment characteristics of myasthenic patients (1–15) and controls (16–25) consisting of individuals with non-myasthenic neurologic conditions.</p

    Survivin expression in myasthenia gravis patients (1–15) and control (16–25) PBMCs.

    No full text
    <p><b>A,B</b>) Representative FACS analysis of total survivin expression of (A) myasthenic patient (7) and (B) control (24) PBMC. <b>C–H</b>) PBMC were stained with antibodies to indicated markers. Data reflect the percentage of total cells staining positive for: <b>C</b>) Survivin (SVN) (p = 0.010), <b>D</b>) CD20+/SVN+ (p = 0.0009), <b>E</b>) CD38+/SVN+ (p = 0.02), <b>F</b>) CD27+/SVN+ (p = 0.05), <b>G</b>) CD138+/SVN+ (p = 0.01) and <b>H</b>) CD8+/SVN+ (p = 0.4). Mean values of patients and controls were compared using two way ANOVA.</p
    • …
    corecore