160 research outputs found

    Lessons Learned for the Assessment of Children’s Pesticide Exposure: Critical Sampling and Analytical Issues for Future Studies

    Get PDF
    In this article we examine sampling strategies and analytical methods used in a series of recent studies of children’s exposure to pesticides that may prove useful in the design and implementation of the National Children’s Study. We focus primarily on the experiences of four of the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency/ Children’s Centers and include University of Washington studies that predated these centers. These studies have measured maternal exposures, perinatal exposures, infant and toddler exposures, and exposure among young children through biologic monitoring, personal sampling, and environmental monitoring. Biologic monitoring appears to be the best available method for assessment of children’s exposure to pesticides, with some limitations. It is likely that a combination of biomarkers, environmental measurements, and questionnaires will be needed after careful consideration of the specific hypotheses posed by investigators and the limitations of each exposure metric. The value of environmental measurements, such as surface and toy wipes and indoor air or house dust samples, deserves further investigation. Emphasis on personal rather than environmental sampling in conjunction with urine or blood sampling is likely to be most effective at classifying exposure. For infants and young children, ease of urine collection (possible for extended periods of time) may make these samples the best available approach to capturing exposure variability of nonpersistent pesticides; additional validation studies are needed. Saliva measurements of pesticides, if feasible, would overcome the limitations of urinary metabolite-based exposure analysis. Global positioning system technology appears promising in the delineation of children’s time–location patterns

    Environmental Exposure Assessment of Pesticides in Farmworker Homes

    Get PDF
    Farmworkers and their families are exposed to pesticides both at work and in their homes. Environmental exposure assessment provides a means to evaluate pesticides in the environment and human contact with these chemicals through identification of sources and routes of exposure. To date, a variety of methods have been used to assess pesticide exposure among farmworker families, mostly focusing on dust and handwipe samples. While many of the methods are similar, differences in the collection, chemical analysis, and statistical analysis, can limit the comparability of results from farm-worker studies. This mini-monograph discusses the strategies used to assess pesticide exposures, presents limitations in the available data for farmworkers, and suggests research needs for future studies of pesticide exposure among farmworker families

    Measuring Potential Dermal Transfer of a Pesticide to Children in a Child Care Center

    Get PDF
    Currently, the major determinants of children’s exposure to pesticides are not fully understood, and approaches for measuring and assessing dermal exposure in a residential setting have not been sufficiently evaluated. In one approach, dermal exposure is estimated using empirically derived transfer coefficients. To assess the feasibility of using this approach for assessing children’s exposure to pesticides, we conducted a study was conducted in a child care center that had a preexisting contract with a pest control service for regular monthly pesticide applications. Children in the selected child care center were monitored using full-body cotton garments to measure dermal loading. Pesticide residues on classroom surfaces were measured in the areas where the children spent time. Measured surface-wipe loadings ranged from 0.47 to 120 ng/cm(2), and total garment loadings ranged from 0.5 to 660 pg/cm(2). The garment and surface loading measurements were used to calculate dermal-transfer coefficients for use in assessing children’s residential exposure to pesticides. Dermal-transfer coefficients calculated using these data range from approximately 10 to 6,000 cm(2)/hr. The wide range in these values demonstrates the importance of developing standard surface-measurement protocols if this approach is to be used to assess dermal exposure in a residential environment. The upper-range values resulting from this study were found to be similar to the default value used by the U.S. Environmental Protection Agency to assess children’s dermal exposures resulting from contact with indoor surfaces

    Determination of no-observed effect level (NOEL)-biomarker equivalents to interpret biomonitoring data for organophosphorus pesticides in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental exposure to organophosphorus pesticides has been characterized in various populations, but interpretation of these data from a health risk perspective remains an issue. The current paper proposes biological reference values to help interpret biomonitoring data related to an exposure to organophosphorus pesticides in children for which measurements of alkylphosphate metabolites are available.</p> <p>Methods</p> <p>Published models describing the kinetics of malathion and chlorpyrifos in humans were used to determine no-observed effect level – biomarker equivalents for methylphosphates and ethylphosphates, respectively. These were expressed in the form of cumulative urinary amounts of alkylphosphates over specified time periods corresponding to an absorbed no-observed effect level dose (derived from a published human exposure dose) and assuming various plausible exposure scenarios. Cumulative amounts of methylphosphate and ethylphosphate metabolites measured in the urine of a group of Quebec children were then compared to the proposed biological reference values.</p> <p>Results</p> <p>From a published no-observed effect level dose for malathion and chlorpyrifos, the model predicts corresponding oral biological reference values for methylphosphate and ethylphosphate derivatives of 106 and 52 nmol/kg of body weight, respectively, in 12-h nighttime urine collections, and dermal biological reference values of 40 and 32 nmol/kg of body weight. Out of the 442 available urine samples, only one presented a methylphosphate excretion exceeding the biological reference value established on the basis of a dermal exposure scenario and none of the methylphosphate and ethylphosphate excretion values were above the obtained oral biological reference values, which reflect the main exposure route in children.</p> <p>Conclusion</p> <p>This study is a first step towards the development of biological guidelines for organophophorus pesticides using a toxicokinetic modeling approach, which can be used to provide a health-based interpretation of biomonitoring data in the general population.</p

    Biomonitoring of Exposure in Farmworker Studies

    Get PDF
    Although biomonitoring has been used in many occupational and environmental health and exposure studies, we are only beginning to understand the complexities and uncertainties involved with the biomonitoring process—from study design, to sample collection, to chemical analysis—and with interpreting the resulting data. We present an overview of concepts that should be considered when using biomonitoring or biomonitoring data, assess the current status of biomonitoring, and detail potential advancements in the field that may improve our ability to both collect and interpret biomonitoring data. We discuss issues such as the appropriateness of biomonitoring for a given study, the sampling time frame, temporal variability in biological measurements to nonpersistent chemicals, and the complex issues surrounding data interpretation. In addition, we provide recommendations to improve the utility of biomonitoring in farmworker studies

    Prediction intervals for future BMI values of individual children - a non-parametric approach by quantile boosting

    Get PDF
    Background: The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. Methods: We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs. As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data. Results: The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations with the predefined coverage probability and outperform the benchmark approach. For the prediction of future BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age of the child. Conclusions: Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it provides an interpretable predictor structure, inherent variable selection properties and can even account for longitudinal data structures

    Association of Pesticide Exposure with Neurologic Dysfunction and Disease

    Get PDF
    Poisoning by acute high-level exposure to certain pesticides has well-known neurotoxic effects, but whether chronic exposure to moderate levels of pesticides is also neurotoxic is more controversial. Most studies of moderate pesticide exposure have found increased prevalence of neurologic symptoms and changes in neurobehavioral performance, reflecting cognitive and psychomotor dysfunction. There is less evidence that moderate exposure is related to deficits in sensory or motor function or peripheral nerve conduction, but fewer studies have considered these outcomes. It is possible that the most sensitive manifestation of pesticide neurotoxicity is a general malaise lacking in specificity and related to mild cognitive dysfunction, similar to that described for Gulf War syndrome. Most studies have focused on organophosphate insecticides, but some found neuro-toxic effects from other pesticides, including fungicides, fumigants, and organochlorine and carbamate insecticides. Pesticide exposure may also be associated with increased risk of Parkinson disease; several classes of pesticides, including insecticides, herbicides, and fungicides, have been implicated. Studies of other neurodegenerative diseases are limited and inconclusive. Future studies will need to improve assessment of pesticide exposure in individuals and consider the role of genetic susceptibility. More studies of pesticides other than organophosphates are needed. Major unresolved issues include the relative importance of acute and chronic exposure, the effect of moderate exposure in the absence of poisoning, and the relationship of pesticide-related neurotoxicity to neurodegenerative disease

    Test System Stability and Natural Variability of a Lemna Gibba L. Bioassay

    Get PDF
    BACKGROUND: In ecotoxicological and environmental studies Lemna spp. are used as test organisms due to their small size, rapid predominantly vegetative reproduction, easy handling and high sensitivity to various chemicals. However, there is not much information available concerning spatial and temporal stability of experimental set-ups used for Lemna bioassays, though this is essential for interpretation and reliability of results. We therefore investigated stability and natural variability of a Lemna gibba bioassay assessing area-related and frond number-related growth rates under controlled laboratory conditions over about one year. METHODOLOGY/PRINCIPAL FINDINGS: Lemna gibba L. was grown in beakers with Steinberg medium for one week. Area-related and frond number-related growth rates (r(area) and r(num)) were determined with a non-destructive image processing system. To assess inter-experimental stability, 35 independent experiments were performed with 10 beakers each in the course of one year. We observed changes in growth rates by a factor of two over time. These did not correlate well with temperature or relative humidity in the growth chamber. In order to assess intra-experimental stability, we analysed six systematic negative control experiments (nontoxicant tests) with 96 replicate beakers each. Evaluation showed that the chosen experimental set-up was stable and did not produce false positive results. The coefficient of variation was lower for r(area) (2.99%) than for r(num) (4.27%). CONCLUSIONS/SIGNIFICANCE: It is hypothesised that the variations in growth rates over time under controlled conditions are partly due to endogenic periodicities in Lemna gibba. The relevance of these variations for toxicity investigations should be investigated more closely. Area-related growth rate seems to be more precise as non-destructive calculation parameter than number-related growth rate. Furthermore, we propose two new validity criteria for Lemna gibba bioassays: variability of average specific and section-by-section segmented growth rate, complementary to average specific growth rate as the only validity criterion existing in guidelines for duckweed bioassays

    Pesticides in house dust from urban and farmworker households in California: an observational measurement study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon) have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion.</p> <p>Methods</p> <p>In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total). We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos) and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin), one phthalate herbicide (chlorthal-dimethyl), one dicarboximide fungicide (iprodione), and one pesticide synergist (piperonyl butoxide).</p> <p>Results</p> <p>More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in the same home were strongly correlated for the majority of the frequently detected analytes (Spearman ρ = 0.70-1.00, p < 0.01). Additionally, diazinon and chlorpyrifos concentrations in Salinas farmworker homes were 40-80% lower than concentrations reported in samples from Salinas farmworker homes studied between 2000-2002, suggesting a temporal reduction after their residential phase-out. Finally, estimated non-dietary pesticide intake for resident children did not exceed current U.S. Environmental Protection Agency's (U.S. EPA) recommended chronic reference doses (RfDs).</p> <p>Conclusion</p> <p>Low-income children are potentially exposed to a mixture of pesticides as a result of poorer housing quality. Historical or current pesticide use indoors is likely to contribute to ongoing exposures. Agricultural pesticide use may also contribute to additional exposures to some pesticides in rural areas. Although children's non-dietary intake did not exceed U.S. EPA RfDs for select pesticides, this does not ensure that children are free of any health risks as RfDs have their own limitations, and the children may be exposed indoors via other pathways. The frequent pesticide use reported and high detection of several home-use pesticides in house dust suggests that families would benefit from integrated pest management strategies to control pests and minimize current and future exposures.</p

    How is Perceived Community Cohesion and Membership in Community Groups Associated with Children’s Dietary Adequacy in Disadvantaged Communities? A Case of the Indian Sundarbans

    Get PDF
    Background: Membership in community groups and a sense of community cohesion may facilitate collective action in mobilizing resources towards better health outcomes. This paper explores the relationship of these factors, along with individual level socio-economic variables, to dietary adequacy among children below 6 years of age, a proximate determinant of child malnutrition. Methods: We conducted a cross-sectional survey in Patharpratima block of the Sundarbans in West Bengal, India, using a two-stage, 30 cluster random sampling design. In 1200 sampled households, we used a structured questionnaire to interview mothers of children below 6 years of age on their child’s nutritional intake. We also interviewed household heads to assess perceived community cohesion using a nine item scale, membership in any community self-help organization, and other socio-economic determinants. We used a logistic regression model to assess their association with a minimum acceptable diet among children between 6 months to 6 years. Results: Only 9.33 % children between 6 and 71 months of age received a minimum acceptable diet. With each increase in the perceived community cohesion score (scale 0-9), a child is 1.31 times more likely to have minimum acceptable diet (95 % CI 1.14, 1.50). The odds of minimum acceptable diet were also higher among children whose mothers had primary education (2.09, 95 % CI 1.03, 2.94) as compared to illiterate mothers and in households with surplus food resources (2.72, 95 % CI 1.32, 5.58) as compared to those without surplus or deficit. In contrast, registering at an Anganwadi (government early child development) centre (odds ratio 1.34 95 % CI 0.69, 2.60) and community membership (odds ratio 0.93, 95 % CI 0.59, 1.46) were not associated with minimum acceptable diet. Conclusion: The results are consistent with what is known about the importance of maternal education and access to food resources in ensuring that children have a minimum acceptable diet. Perceived community cohesion seems to play a positive role in children’s diets. Further research needs to clarify which community characteristics and services are the most relevant, how they can better support children’s diets, and how interventions can strengthen these community characteristics and services
    corecore