40 research outputs found

    Effects of Antibacterial Peptide Extracted from Bacillus subtilis fmbJ on the Growth, Physiological Response and Disease Resistance of Megalobrama amblycephala

    Get PDF
    The effects of an antibacterial peptide obtained from Bacillus subtilis fmbJ on growth, serum lysozyme complements 3 and 4, total protein content, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total antioxidative capacity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and disease resistance of Wuchang bream (Megalobrama amblycephala) were examined. Fish were randomly divided into five groups: a control group which was fed a basic diet, and four groups fed the basic diet supplemented with 0.1%, 0.2%, 0.4%, or 0.8% antibacterial peptide. At eight weeks, M. amblycephala fed the diet containing 0.2% antibacterial peptide had higher serum lysozyme activity, complement 3 and 4 contents, and SOD activity than the control fish, but lower serum MDA content and AST activity. Fish fed the 0.4% diet had higher weight gain rate, serum lysozyme activity, complement 4 content, total antioxidative capacity, and total protein than the control, and lower serum ALT activity. Feed conversion ratios of fish fed the 0.2% or 0.4% diets were lower than those of control fish. Artificial infection with Aeromonas hydrophila resulted in 93% cumulative mortality in the control group, and 61-84% in the groups fed the 0.2% or 0.4% diets. The present study suggests that feed supplementation with 0.2-0.4% antibacterial peptides can stimulate immunity, increase resistance to pathogenic infection, and promote growth in M. amblycephala

    Cardiomyocyte Triglyceride Accumulation and Reduced Ventricular Function in Mice with Obesity Reflect Increased Long Chain Fatty Acid Uptake and De Novo Fatty Acid Synthesis

    Get PDF
    A nonarteriosclerotic cardiomyopathy is increasingly seen in obese patients. Seeking a rodent model, we studied cardiac histology, function, cardiomyocyte fatty acid uptake, and transporter gene expression in male C57BL/6J control mice and three obesity groups: similar mice fed a high-fat diet (HFD) and db/db and ob/ob mice. At sacrifice, all obesity groups had increased body and heart weights and fatty livers. By echocardiography, ejection fraction (EF) and fractional shortening (FS) of left ventricular diameter during systole were significantly reduced. The Vmax for saturable fatty acid uptake was increased and significantly correlated with cardiac triglycerides and insulin concentrations. Vmax also correlated with expression of genes for the cardiac fatty acid transporters Cd36 and Slc27a1. Genes for de novo fatty acid synthesis (Fasn, Scd1) were also upregulated. Ten oxidative phosphorylation pathway genes were downregulated, suggesting that a decrease in cardiomyocyte ATP synthesis might explain the decreased contractile function in obese hearts

    Mouse Senile Amyloid Fibrils Deposited in Skeletal Muscle Exhibit Amyloidosis-Enhancing Activity

    Get PDF
    Amyloidosis describes a group of protein folding diseases in which amyloid proteins are abnormally deposited in organs and/or tissues as fine fibrils. Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (apoA-II) deposits as amyloid fibrils (AApoAII) and can be transmitted from one animal to another both by the feces and milk excreted by mice with amyloidosis. Thus, mouse AApoAII amyloidosis has been demonstrated to be a ‘‘transmissible disease’’. In this study, to further characterize the transmissibility of amyloidosis, AApoAII amyloid fibrils were injected into transgenic Apoa2 c Tg +/2 and normal R1.P1-Apoa2 c mice to induce AApoAII systemic amyloidosis. Two months later, AApoAII amyloid deposits were found in the skeletal muscles of amyloid-affected mice, primarily in the blood vessels and in the interstitial tissues surrounding muscle fibers. When amyloid fibrils extracted from the skeletal muscles were subjected to Western blot analysis, apoA-II was detected. Amyloid fibril fractions isolated from the muscles not only demonstrated the structure of amyloid fibrils but could also induce amyloidosis in young mice depending on its fibril conformation. These findings present a possible pathogenesis of amyloidosis: transmission of amyloid fibril conformation through muscle, and shed new light on the etiology involved in amyloid disorders

    Transcription Factors Responding to Pb Stress in Maize

    No full text
    Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress

    Transmission electron microscopy images of amyloid fibrils deposited in muscles.

    No full text
    <p>A. Amyloid fibrils extracted from the muscles of an AApoAII-deposited <i>Apoa2<sup>c</sup></i>Tg<i><sup>+/−</sup></i> mouse corresponding to lane 1 in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1000914#ppat-1000914-g003" target="_blank">Figure 3A</a>. Transmission of electron micrographs of pectoral muscles from the 4-month-old <i>Apoa2<sup>c</sup></i>Tg<i><sup>+/−</sup></i> mice two months after injection and confirmed fibrillar deposits in the endomysium (4B) and capillary walls (4C). Arrowheads indicate the amyloid deposits. The highmagnification insets of the areas surrounded with white squares shows the fibrillar nature of the deposits. Scale bar = 0.2 µm.</p
    corecore