35 research outputs found

    Research progress in surface plasmon resonance technology in exosome characterization and identification

    Get PDF
    Exosomes are lipid bilayer membrane vesicles that are widely distributed in peripheral blood, saliva, urine, ascites and other fluids. A variety of tumor-related genes in exosomes are involved in the information exchange between cancer cells and normal cells, as well as the process of tumor cell proliferation and metastasis, play an important role in tumor development, and are potential biomarkers for tumor liquid biopsy. In recent years, surface plasmon resonance (SPR) is considered to have great application potential in the characterization of exosomes due to its high sensitivity, small sample size required for testing, short detection time and low background interference, etc. In this article, the basic principle of SPR and the application prospect of SPR-based biosensing platform in exosomes characterization were mainly illustrated

    Association between funding source, methodological quality and research outcomes in randomized controlled trials of synbiotics, probiotics and prebiotics added to infant formula: A Systematic Review

    Get PDF

    A study on financial service trade between Australia and China

    No full text
    This article analyses the current position and potential problems in the Australia-China financial service trade. The world’s financial service trade is underdeveloped compared with world merchandise trade. Similarly, the Australia-China financial service trade is also underdeveloped compared with bilateral merchandise trade. The major reasons lie with the late development of bilateral financial service trade, weak promotion by the Australian Government and China’s immature legal and market system. The conclusion oflers suggestions on how both sides might achieve success in the area offinancial service trade in the negotiation of a bilateralfiee-trade agreement

    Minimum-Energy Multiwavelet Frame on the Interval [0,1]

    Get PDF
    Drawing inspiration from the idea of combining multiwavelets on the interval with frame theory organically, we study minimum-energy multiwavelet frame on the interval [0,1] (MEMWFI). Firstly, left boundary multiscaling functions, right boundary multiscaling functions, and the definition of MEMWFI are put forward, and the equivalent characterizations of MEMWFI are given. Then, two algorithms of constructing MEMWFI are proposed. Finally, the decomposition formula, reconstruction formulas, and numerical examples are given

    Syntheses and Structures of Mononuclear, Dinuclear and Polynuclear Silver(I) Complexes of 2‑Pyrazole-Substituted 1,10-Phenanthroline Ligands

    No full text
    A series of mononuclear, dinuclear and polynuclear silver­(I) complexes (<b>1</b>–<b>6</b>) bearing 2-pyrazole-substituted 1,10-phenanthroline derivatives (<b>L</b><sup><b>1</b></sup>, <sup><b>F</b></sup><b>L</b><sup><b>1</b></sup>, <b>L</b><sup><b>2</b></sup>) have been synthesized and characterized by <sup>1</sup>H and <sup>13</sup>C NMR, IR spectroscopy, elemental analysis, and single crystal X-ray diffraction. Reaction of <b>L</b><sup><b>1</b></sup> (<b>L</b><sup>1</sup> = 2-(3,5-dimethylpyrazol-1-yl)-1,10-phenanthroline) with AgClO<sub>4</sub> or AgBF<sub>4</sub> afforded two dinuclear silver­(I) complexes [Ag<sub>2</sub>(<b>L</b><sup><b>1</b></sup>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]­(ClO<sub>4</sub>)<sub>2</sub> (<b>1</b>) and [Ag<sub>2</sub>(<b>L</b><sup><b>1</b></sup>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]­(BF<sub>4</sub>)<sub>2</sub> (<b>2</b>), in which two [Ag<b>L</b><sup><b>1</b></sup>(CH<sub>3</sub>CN)]<sup>+</sup> units are linked by Ag···Ag interaction (Ag···Ag separation: 3.208(2) and 3.248(1) Å, respectively). A one-dimensional polymer {[Ag<b>L</b><sup><b>1</b></sup>]­(BF<sub>4</sub>)}<sub>∞</sub> (<b>3</b>) consisting of an infinite ···Ag···Ag···Ag··· chain (Ag···Ag separation: 3.059(1) Å), as well as a dinuclear complex [Ag<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>(<b>L</b><sup><b>1</b></sup>)<sub>2</sub>] (<b>4</b>) in which the perchlorate anions instead of solvents are involved in the metal coordination, have also been obtained. The mononuclear complex [Ag­(<sup><b>F</b></sup><b>L</b><sup><b>1</b></sup>)<sub>2</sub>]­(BF<sub>4</sub>) (<b>5</b>) was synthesized from <sup><b>F</b></sup><b>L</b><sup><b>1</b></sup> (<sup><b>F</b></sup><b>L</b><sup><b>1</b></sup> = 2-(3,5-bis­(trifluoromethyl)­pyrazol-1-yl)-1,10-phenanthroline) and AgBF<sub>4</sub>, while the dinuclear [Ag<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub>(<b>L</b><sup><b>2</b></sup>)<sub>2</sub>] (<b>6</b>) was isolated from <b>L</b><sup><b>2</b></sup> (<b>L</b><sup><b>2</b></sup> = 2-[<i>N</i>-(3-methyl-5-phenylpyrazole)]-1,10-phenanthroline). The photoluminescence properties of the ligands and complexes <b>1</b>–<b>6</b> have been studied both in the solid state and in solution

    Multilayer factors associated with excess all-cause mortality during the omicron and non-omicron waves of the COVID-19 pandemic: time series analysis in 29 countries

    No full text
    Abstract Background The COVID-19 pandemic has resulted in significant excess mortality globally. However, the differences in excess mortality between the Omicron and non-Omicron waves, as well as the contribution of local epidemiological characteristics, population immunity, and social factors to excess mortality, remain poorly understood. This study aims to solve the above problems. Methods Weekly all-cause death data and covariates from 29 countries for the period 2015–2022 were collected and used. The Bayesian Structured Time Series Model predicted expected weekly deaths, stratified by gender and age groups for the period 2020–2022. The quantile-based g-computation approach accounted for the effects of factors on the excess all-cause mortality rate. Sensitivity analyses were conducted using alternative Omicron proportion thresholds. Results From the first week of 2021 to the 30th week of 2022, the estimated cumulative number of excess deaths due to COVID-19 globally was nearly 1.39 million. The estimated weekly excess all-cause mortality rate in the 29 countries was approximately 2.17 per 100,000 (95% CI: 1.47 to 2.86). Weekly all-cause excess mortality rates were significantly higher in both male and female groups and all age groups during the non-Omicron wave, except for those younger than 15 years (P < 0.001). Sensitivity analysis confirmed the stability of the results. Positive associations with all-cause excess mortality were found for the constituent ratio of non-Omicron in all variants, new cases per million, positive rate, cardiovascular death rate, people fully vaccinated per hundred, extreme poverty, hospital patients per million humans, people vaccinated per hundred, and stringency index. Conversely, other factors demonstrated negative associations with all-cause excess mortality from the first week of 2021 to the 30th week of 2022. Conclusion Our findings indicate that the COVID-19 Omicron wave was associated with lower excess mortality compared to the non-Omicron wave. This study’s analysis of the factors influencing excess deaths suggests that effective strategies to mitigate all-cause mortality include improving economic conditions, promoting widespread vaccination, and enhancing overall population health. Implementing these measures could significantly reduce the burden of COVID-19, facilitate coexistence with the virus, and potentially contribute to its elimination

    Assessing the Quality of Care for Patients with Acute Myocardial Infarction in China

    No full text
    There is a wide practice gap between optimal care and actual care for patients with acute myocardial infarction (AMI) in China. Indicators of quality of care for AMI patients have already been developed by a modified Delphi process. Our aim was to assess the association between those indicators and in-hospital mortality in AMI patients. We hypothesized that an association exists between quality-of-care indicators and in-hospital mortality in AMI patients. Based on the data of 2128 AMI patients at 20 tertiary hospitals in Heilongjiang Province from January 1, 2009 to October 31, 2010, we estimated the compliance rates of indicators. Association between indicators and in-hospital mortality was assessed using hierarchical generalized linear models. Among 2128 patients, 163 (7.66%) died during their hospital stay. The compliance rates were 71.6%, 41.3%, 82.5%, 63.5%, 80.4%, 5.1%, 28.9%, and 41.2% for the use of aspirin, -blocker, clopidogrel, angiotensin-converting enzyme inhibitor, statin, thrombolytic, percutaneous coronary intervention, and coronary angiography, respectively. Aspirin, clopidogrel, angiotensin-converting enzyme inhibitor, statin, and percutaneous coronary intervention were significantly associated with in-hospital mortality after adjustment for potential confounding factors. We found some disparities between guidelines and clinical practice for AMI patients in China and a significant association between indicators and in-hospital mortality. Our findings are potentially helpful for assessing and improving the quality of care for AMI patients in China

    Homometallic Silver(I) Complexes of a Heterotopic NHC-Bridged Bis-Bipyridine Ligand

    No full text
    By varying the metal to ligand ratio, stepwise formation of a series of homonuclear silver­(I) complexes of a carbene-bridged bis-bipyridine ligand (L) was achieved. In the mononuclear 1:2 complex [AgL<sub>2</sub>]Br (<b>1</b>) only the carbene carbon is involved in the metal coordination, while both of the 2,2′-bipyridine (bpy) arms are free. When the amount of silver­(I) ion was increased, isomorphous 2:2 dinuclear complexes with different counteranions, [Ag<sub>2</sub>L<sub>2</sub>]­X<sub>2</sub> (X = Br<sup>–</sup> (<b>2a</b>), PF<sub>6</sub><sup>–</sup> (<b>2b</b>), BPh<sub>4</sub><sup>–</sup> (<b>2c</b>)), were synthesized from the ligand LX, in which the carbene carbon and one of the bpy units participate in the coordination with silver­(I) ions. Further addition of Ag<sup>I</sup> salt afforded the one-dimensional coordination polymer {[Ag<sub>3</sub>L<sub>2</sub>]­(PF<sub>6</sub>)<sub>3</sub>·4CH<sub>3</sub>CN}<sub><i>n</i></sub> (<b>3</b>), wherein the hanging bipyridine units also coordinate with Ag<sup>I</sup> and thus all the coordination sites of the ligand are employed. The results reveal the preference of Ag<sup>I</sup> ion for the carbene carbon donor rather than the bpy units. The synthesis, structures, and interconversion of the complexes and the counteranion effects on the structures are reported, and the luminescent properties of the ligand LX and the silver complexes have also been studied

    Regulation of G-Protein Signaling by RKTG via Sequestration of the Gβγ Subunit to the Golgi Apparatus ▿

    No full text
    Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of α, β, and γ subunits, leading to dissociation of the Gα subunit from the Gβγ subunit. While the Gα subunit is imperative for downstream signaling, the Gβγ subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the Gβγ subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with Gβ and tethers Gβγ to the Golgi apparatus. Overexpression of RKTG impedes the interaction of Gβγ with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the β2-adrenergic receptor (β2AR), and alters β2AR desensitization. In addition, RKTG inhibits Gβγ- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced Gβ translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering Gβγ to the Golgi apparatus and thereby attenuating the functions of Gβγ

    Coordinated modulation of long non-coding RNA ASBEL and curcumin co-delivery through multicomponent nanocomplexes for synchronous triple-negative breast cancer theranostics

    No full text
    Abstract Background Abnormally regulated long non-coding RNAs (lncRNAs) functions in cancer emphasize their potential to serve as potential targets for cancer therapeutic intervention. LncRNA ASBEL has been identified as oncogene and an anti-sense transcript of tumor-suppressor gene of BTG3 in triple-negative breast cancer (TNBC). Results Herein, multicomponent self-assembled polyelectrolyte nanocomplexes (CANPs) based on the polyelectrolytes of bioactive hyaluronic acid (HA) and chitosan hydrochloride (CS) were designed and prepared for the collaborative modulation of oncogenic lncRNA ASBEL with antago3, an oligonucleotide antagonist targeting lncRNA ASBEL and hydrophobic curcumin (Cur) co-delivery for synergetic TNBC therapy. Antago3 and Cur co-incorporated CANPs were achieved via a one-step assembling strategy with the cooperation of noncovalent electrostatic interactions, hydrogen-bonding, and hydrophobic interactions. Moreover, the multicomponent assembled CANPs were ulteriorly decorated with a near-infrared fluorescence (NIRF) Cy-5.5 dye (FCANPs) for synchronous NIRF imaging and therapy monitoring performance. Resultantly, MDA-MB-231 cells proliferation, migration, and invasion were efficiently inhibited, and the highest apoptosis ratio was induced by FCANPs with coordination patterns. At the molecular level, effective regulation of lncRNA ASBEL/BTG3 and synchronous regulation of Bcl-2 and c-Met pathways could be observed. Conclusion As expected, systemic administration of FCANPs resulted in targeted and preferential accumulation of near-infrared fluorescence signal and Cur in the tumor tissue. More attractively, systemic FCANPs-mediated collaborative modulating lncRNA ASBEL/BTG3 and Cur co-delivery significantly suppressed the MDA-MB-231 xenograft tumor growth, inhibited metastasis and extended survival rate with negligible systemic toxicity. Our present study represented an effective approach to developing a promising theranostic platform for combating TNBC in a combined therapy pattern
    corecore