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Drawing inspiration from the idea of combining multiwavelets on the interval with frame theory organically, we study minimum-
energy multiwavelet frame on the interval [0, 1] (MEMWFI). Firstly, left boundary multiscaling functions, right boundary
multiscaling functions, and the definition of MEMWFI are put forward, and the equivalent characterizations of MEMWFI are
given.Then, two algorithms of constructingMEMWFI are proposed. Finally, the decomposition formula, reconstruction formulas,
and numerical examples are given.

1. Introduction

The notion of frame was introduced by Duffin and Schaeffer
[1]. It is a generalization of basis and can be viewed as some
kind of “overcomplete basis.” A basis in a Hilbert space allows
each element to be written as a linear combination of the
elements in the basis, and the combination is unique. An
overcomplete frame also allows one to represent each element
via it, but the representation is not unique. This property
plays an important role inmathematics, signal analysis, time-
frequency analysis, and so on [2–20]. In nearly thirty years,
frame theory has been growing rapidly. Wavelet frames are a
class of important frames among all kinds of frames.

Let H be a complex, separable Hilbert space. A sequence
{𝑓𝑘 : 𝑘 ∈ Z} of elements in H is a frame for H if there exist
constants 𝐴, 𝐵 > 0 such that

𝐴
𝑓


2
≤ ∑

𝑘∈Z

⟨𝑓, 𝑓𝑘⟩

2
≤ 𝐵

𝑓

2
, ∀𝑓 ∈ H. (1)

The numbers𝐴, 𝐵 are called frame bounds. A frame {𝑓𝑘 : 𝑘 ∈

Z} is tight if we can choose 𝐴 = 𝐵 as frame bounds. A frame
{𝑓𝑘 : 𝑘 ∈ Z} is exact if it ceases to be a framewhen an arbitrary
element is removed. When 𝐴 = 𝐵 = 1, then

𝑓 = ∑
𝑘∈Z

⟨𝑓, 𝑓𝑘⟩ 𝑓𝑘, ∀𝑓 ∈ H. (2)

Chui and He [6] proposed the concept of minimum-energy
wavelet frames, which can reduce the computational com-
plexity and maintain the numerical stability, and do not
need to search dual frames in the decomposition and recon-
struction of functions. Therefore, many people paid a lot of
attention to the study of minimum-energy wavelet frames.
Petukhov [8] studied minimum-energy wavelet frames with
symmetry. Huang and Cheng [16] studied minimum-energy
wavelet frames with arbitrary integer dilation factor. Gao and
Cao [17] researchedminimum-energy wavelets frames on the
interval and its applications. Huang and Li [18] studied the
algorithms of constructing minimum-energy wavelet frames
on the interval. Recently,Huang et al. [19] andLiang andZhao
[20] have been concernedwith the algorithms of constructing
minimum-energy multiwavelet frames. In [19], the authors
gave the definitions of multiwavelet frame multiresolution
analysis for 𝐿2

(R) andminimum-energymultiwavelet frame.
But, in many practical applications, one is often interested
in the problems which are confined to a finite interval, such
as the differential equation solving, image processing, and
signal analysis. Therefore, we should pay more attention to
minimum-energymultiwavelet frames on the interval; under
this case, we can combine the features (symmetry, compact
support, and regularity) of multiwavelets on the interval
with the superiority (redundancy, good numerical stability,
and lower computational complexity) of minimum-energy
wavelet frames.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 262637, 19 pages
http://dx.doi.org/10.1155/2015/262637



2 Mathematical Problems in Engineering

Throughout this paper, let Z,R denote the set of integers
and real numbers, respectively. N denotes the set of positive
integers. Let 𝑎, 𝑟 ≥ 2, and 𝑎, 𝑟 ∈ N.

The organization of this paper is as follows. In Section 2,
we give the main results; left boundary multiscaling func-
tions, right boundary multiscaling functions, and the def-
inition of MEMWFI are put forward; the equivalent char-
acterizations of MEMWFI, two algorithms for construct-
ing MEMWFI, and the decomposition and reconstruction
formulas of MEMWFI are proposed. Finally, numerical
examples are given in Section 3.

2. Main Results

In order to give the definitions of MEMWFI, left boundary
multiscaling functions, and right boundary multiscaling
functions, we let 𝛾 > 0, 𝑗0 = min{𝑗 : 𝑎

𝑗
≥ 𝛾, 𝑗 ∈ Z}.

Definition 1. If a closed subspaces sequence 𝑉𝑗([0, 1]), 𝑗 ≥ 𝑗0
in 𝐿

2
([0, 1]) satisfies

(1) 𝑉𝑗([0, 1]) ⊂ 𝑉𝑗+1([0, 1]), 𝑗 ≥ 𝑗0;

(2) ⋃
𝑗≥𝑗0

𝑉𝑗([0, 1]) is dense in 𝐿
2
([0, 1]);

(3) ⋂
𝑗≥𝑗0

𝑉𝑗([0, 1]) = 𝑉𝑗0
([0, 1]);

(4) 𝑓(𝑥) ∈ 𝑉𝑗([0, 1]) ⇔ 𝑓(𝑎𝑥) ∈ 𝑉𝑗+1([0, 1]), 𝑗 ≥ 𝑗0, 𝑗 ∈

Z;
(5) 𝑓(𝑥) ∈ 𝑉𝑗([0, 1]) ⇔ 𝑓(𝑥 + 𝑎

−𝑗
𝑘) ∈ 𝑉𝑗([0, 1]), 𝑗 ≥

𝑗0, 𝑗, 𝑘 ∈ Z;
(6) there exists a vector-valued function 𝜙(𝑥) = (𝜙1, 𝜙2,

. . . , 𝜙𝑟)
𝑇
, 𝜙1, 𝜙2, . . . , 𝜙𝑟 ∈ 𝑉𝑗0

([0, 1]) with supp𝜙 =

[0, 𝛾] such that

{𝜙𝜏 (𝑎
𝑗0𝑥− 𝑘) , 1≤ 𝜏≤ 𝑟, 0≤ 𝑘≤𝐾𝑗0

} (3)

forms a frame of 𝑉𝑗0
([0, 1]), where 𝐾𝑗0

is the biggest
integer number tomake supp𝜙(𝑎

𝑗0𝑥)∪ supp𝜙(𝑎
𝑗0𝑥−

𝐾𝑗0
) ⊂ [0, 1],

then we say 𝑉𝑗([0, 1]) (𝑗 ≥ 𝑗0) is a multiwavelet
frame multiresolution analysis on the interval with
dilation factor 𝑎 and multiplicity 𝑟 or a multiwavelet
frame multiresolution analysis on the interval [0, 1]
and denote it as MWFMRA (𝑉𝑗[0, 1]). The function
𝜙(𝑥) is vector-valued scaling function (multiscaling
function).

For a MWFMRA (𝑉𝑗[0, 1]), we let 𝑉𝑗+1([0, 1]) =

𝑉𝑗([0, 1]) +𝑊𝑗([0, 1]). If we can find vector-valued functions
𝜓
1
(𝑥), 𝜓

2
(𝑥), . . . , 𝜓

𝑀
(𝑥) such that {𝜓𝑖

𝜏
(𝑎

𝑗0𝑥 − 𝑘) : 1 ≤ 𝜏 ≤

𝑟, 1 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝐾𝑗0
} is a frame for 𝑊𝑗0

([0, 1]), then
we say {𝜓

1
(𝑥), 𝜓

2
(𝑥), . . . , 𝜓

𝑀
(𝑥)} is a multiwavelet frame on

the interval, where 𝜓
𝑖
(𝑥) = (𝜓

𝑖

1(𝑥), 𝜓
𝑖

2(𝑥), . . . , 𝜓
𝑖

𝑟
(𝑥))

𝑇
, 𝑖 =

1, 2, . . . ,𝑀.

2.1. Left and Right Boundary Multiscaling Functions. Let
𝜙(𝑥) be a vector-valued scaling function and generate a

multiwavelet frame multiresolution analysis for 𝐿
2
(R) with

corresponding multiwavelet frame Ψ = {𝜓
1
, 𝜓

2
, . . . , 𝜓

𝑀
}.

Suppose 𝜙(𝑥) satisfies the refinable equation

𝜙 (𝑥) =

𝛾1

∑
𝑘=0

𝑃𝑘𝜙 (𝑎𝑥 − 𝑘) (4)

with supp𝜙 = [0, 𝛾].
Let 𝛾1 = (𝑎 − 1)𝛾, 𝑁 = [𝛾/𝑎].

Theorem 2. Define left boundary multiscaling functions 𝜙𝐿

𝑗,𝑘

and right boundary multiscaling functions 𝜙𝑅,𝑠

𝑗,𝑘
as follows:

𝜙
𝐿

𝑗,𝑘
(𝑥) :=

𝑘−𝑁

∑
𝑛=−𝛾+1

𝐶𝑘,𝑛𝜙𝑗,𝑛 (𝑥)
[0,1]

, 0 ≤ 𝑘 ≤ 𝑁 − 1,

𝜙
𝑅,𝑠

𝑗,𝑘
(𝑥) :=

𝑎
𝑗
−1
∑

𝑛=𝑎𝑗−𝛾+1+𝑘

𝐶
𝑠

𝑘,𝑛
𝜙𝑗,𝑛 (𝑥)

[0,1] ,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑠 ≤ 𝑎 − 1,

(5)

where 𝐶𝑘,𝑛, 𝐶
𝑠

𝑘,𝑛
are 𝑟 × 𝑟 coefficient matrices. Denote

Φ𝑗 := {𝜙
𝐿

𝜏,𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁− 1; 𝜙𝜏,𝑗,𝑘, 𝑘 = 0, 1, . . . , 𝑎𝑗

− 𝛾; 𝜙
𝜏,𝑅,𝑠

𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁− 1, 1≤ 𝑠 ≤ 𝑎 − 1 : 1≤ 𝜏

≤ 𝑟} .

(6)

If {𝐶𝑘,𝑛} and {𝐶
𝑠

𝑘,𝑛
} make {𝜙

𝐿

𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁 − 1}

and {𝜙
𝑅,𝑠

𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁 − 1, 𝑠 = 1, 2, . . . , 𝑎 − 1} satisfy

frame condition, respectively, then there exist coefficient matri-
ces 𝑃

𝐿

𝑘,𝑛
, 𝑃

𝑅,𝑠

𝑘,𝑛
, 𝑝

𝐿

𝑘,𝑛
, 𝑝

𝑅,𝑠

𝑘,𝑛
, such that the matrix-valued refinable

equations of Φ𝑗 are expressed as follows:

√𝑎𝜙
𝐿

𝑗,𝑘
=

𝑁−1
∑
𝑛=0

𝑃
𝐿

𝑘,𝑛
𝜙

𝐿

𝑗+1,𝑛 +
𝑎𝑘+𝑁1

∑
𝑛=0

𝑝
𝐿

𝑘,𝑛
𝜙𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1,

√𝑎𝜙𝑗,𝑘 =

𝑎𝑘+𝛾1

∑
𝑛=𝑎𝑘

𝑃𝑛−𝑎𝑘𝜙𝑗+1,𝑛, 0 ≤ 𝑘 ≤ 𝑎
𝑗
− 𝛾,

√𝑎𝜙
𝑅,𝑠

𝑗,𝑘
=

𝑎𝑘+𝑁2

∑
𝑛=0

𝑝
𝑅,𝑠

𝑘,𝑛
𝜙𝑗+1,𝑎𝑗+1−𝛾−𝑛 +

𝑁−1
∑
𝑛=0

𝑃
𝑅,𝑠

𝑘,𝑛
𝜙

𝑅,𝑠

𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑠 ≤ 𝑎 − 1,

(7)

where𝑁1 = 𝛾1 − 𝑎𝑁, 𝑁2 = (𝑎 − 1)𝛾 − 𝑎𝑁, andΦ𝑗 can form a
frame of 𝑉𝑗([0, 1]) when 𝑗 ≥ 𝑗0.

Proof. The proof is similar to Theorem 2.2 in [17].

Theorem 3. Let 𝜙𝐿

𝑗,𝑘
and 𝜙

𝑅,𝑠

𝑗,𝑘
be the left boundary multiscaling

functions and right boundary multiscaling functions defined in
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Theorem 2. Let vector-valued functions {𝜓𝐿,𝑖

𝑗,𝑘
, 1 ≤ 𝑖 ≤ 𝑀, 𝑘 =

0, 1, . . . , 𝑁 − 1}, {𝜓𝑖

𝑗,𝑘
, 1 ≤ 𝑖 ≤ 𝑀, 𝑘 = 0, 1, . . . , 𝑎𝑗

− 𝛾},
{𝜓

𝑅,𝑠,𝑖

𝑗,𝑘
, 1 ≤ 𝑖 ≤ 𝑀, 𝑘 = 0, 1, . . . , 𝑁 − 1, 𝑠 = 1, 2, . . . , 𝑎 − 1}

be expressed as follows:

√𝑎𝜓
𝐿,𝑖

𝑗,𝑘
=

𝑁−1
∑
𝑛=0

𝑄
𝐿,𝑖

𝑘,𝑛
𝜙

𝐿

𝑗+1,𝑛 +
𝑎𝑘+𝑁1

∑
𝑛=0

𝑞
𝐿,𝑖

𝑘,𝑛
𝜙𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1,

√𝑎𝜓
𝑖

𝑗,𝑘
=

𝑎𝑘+𝛾1

∑
𝑛=𝑎𝑘

𝑄
𝑖

𝑛−𝑎𝑘
𝜙𝑗+1,𝑛, 0 ≤ 𝑘 ≤ 𝑎

𝑗
− 𝛾,

√𝑎𝜓
𝑅,𝑠,𝑖

𝑗,𝑘
=

𝑎𝑘+𝑁2

∑
𝑛=0

𝑞
𝑅,𝑠,𝑖

𝑘,𝑛
𝜙𝑗+1,𝑎𝑗+1−𝛾−𝑛 +

𝑁−1
∑
𝑛=0

𝑄
𝑅,𝑠,𝑖

𝜇:𝑘,𝑛
𝜙

𝑅,𝑠

𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1, 𝑠 = 1, 2, . . . , 𝑎 − 1,

(8)

where𝑁1 = 𝛾1 − 𝑎𝑁, 𝑁2 = (𝑎 − 1)𝛾 − 𝑎𝑁. Denote

Ψ𝑗 := {𝜓
𝐿,𝑖

𝜏,𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁− 1; 𝜓𝑖

𝜏,𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑎𝑗

− 𝛾; 𝜓
𝑅,𝑠,𝑖

𝜏,𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁− 1, 1≤ 𝑠 ≤ 𝑎 − 1 : 1≤ 𝑖

≤𝑀, 1≤ 𝜏≤ 𝑟} .

(9)

If coefficient matrices 𝑄𝐿,𝑖

𝑘,𝑛
, 𝑞

𝐿,𝑖

𝑘,𝑛
, 𝑄

𝑅,𝑠,𝑖

𝑘,𝑛
, 𝑞

𝑅,𝑠,𝑖

𝑘,𝑛
such that {𝜓𝐿,𝑖

𝑗,𝑘
, 𝑘 =

0, 1, . . . , 𝑁 − 1, 𝑖 = 1, 2, . . . ,𝑀} and {𝜓
𝑅,𝑠,𝑖

𝑗,𝑘
, 𝑘 = 0, 1, . . . , 𝑁 −

1, 𝑠 = 1, 2, . . . , 𝑎 − 1, 𝑖 = 1, 2, . . . ,𝑀} satisfy frame condition,
respectively, then Ψ𝑗 is a frame of𝑊𝑗([0, 1]) for any 𝑗 ≥ 𝑗0.

Proof. The proof is similar to Theorem 3.2 in [17] and
Theorem 3.2 in [18].

Definition 4. Let Φ𝑗, Ψ𝑗, 𝑗 ∈ Z be defined in Theorems 2 and
3, respectively. If any 𝑓 ∈ 𝐿

2
([0, 1]), one has

∑
𝜃∈Φ𝑗0+1

⟨𝑓, 𝜃⟩

2
= ∑

𝜂𝜙∈Φ𝑗0


⟨𝑓, 𝜂𝜙⟩



2
+ ∑

𝜂𝜓∈Ψ𝑗0


⟨𝑓, 𝜂𝜓⟩



2
, (10)

and then the family of functions Ψ𝑗0
are called a minimum-

energy multiwavelet frame on the interval [0, 1] (MEMWFI)
associatedΦ𝑗0

with dilation factor 𝑎 and multiplicity 𝑟.
By Parseval identity, (10) is equivalent to

∑
𝜃∈Φ𝑗0+1

⟨𝑓, 𝜃⟩ 𝜃 = ∑
𝜂𝜙∈Φ𝑗0

⟨𝑓, 𝜂𝜙⟩ 𝜂𝜙 + ∑
𝜂𝜓∈Ψ𝑗0

⟨𝑓, 𝜂𝜓⟩ 𝜂𝜓,

𝑓 ∈ 𝐿
2
([0, 1]) .

(11)

2.2. Construction of MEMWFI. For convenience, we denote
the following:

(1) ℓ𝑗 = 𝑎
𝑗
− 𝛾, 𝜆 = 𝑎(𝑁 − 1).

(2) 𝑆𝑗 = {𝑘 : −𝑁 ≤ 𝑘 ≤ 𝑎
𝑗
− 𝛾 + (𝑎 − 1)𝑁}.

(3) Φ𝑗 = (. . . , 𝜙𝑗,𝑘

𝑇
, . . . )

𝑇 is |𝑆𝑗|𝑟 dimension column vec-
tor; and 𝜙𝑗,𝑘 are left boundary multiscaling functions
and right boundary multiscaling functions defined in
Theorem 2:

𝜙𝑗,𝑘

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜙
𝐿

𝑗,𝑁+𝑘
, 𝑘 = −𝑁, . . . , −1,

𝜙𝑗,𝑘, 𝑘 = 0, . . . , 𝑎𝑗
− 𝛾,

𝜙
𝑅,1
𝑗,𝑘−ℓ𝑗−1

, 𝑘 = ℓ𝑗 + 1, . . . , ℓ𝑗 + 𝑁,

𝜙
𝑅,2
𝑗,𝑘−ℓ𝑗−𝑁−1, 𝑘 = ℓ𝑗 + 𝑁 + 1, . . . , ℓ𝑗 + 2𝑁,

...

𝜙
𝑅,𝑎−1
𝑗,𝑘−ℓ𝑗−(𝑎−2)𝑁−1, 𝑘 = ℓ𝑗 + (𝑎 − 2)𝑁 + 1, . . . , ℓ𝑗 + (𝑎 − 1)𝑁.

(12)

(4) Ψ𝑖

𝑗
= (. . . , 𝜓

𝑖

𝑗,𝑘

𝑇

, . . . )
𝑇 are |𝑆𝑗|𝑟 dimension column

vector; and 𝜓
𝑖

𝑗,𝑘
are multiwavelet frames defined in

Theorem 3:

𝜓
𝑖

𝑗,𝑘

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜓
𝐿,𝑖

𝑗,𝑁+𝑘
, 𝑘 = −𝑁, . . . , −1,

𝜓
𝑖

𝑗,𝑘
, 𝑘 = 0, . . . , 𝑎𝑗

− 𝛾,

𝜓
𝑅,1,𝑖
𝑗,𝑘−ℓ𝑗−1

, 𝑘 = ℓ𝑗 + 1, . . . , ℓ𝑗 + 𝑁,

𝜓
𝑅,2,𝑖
𝑗,𝑘−ℓ𝑗−𝑁−1, 𝑘 = ℓ𝑗 + 𝑁 + 1, . . . , ℓ𝑗 + 2𝑁,

...

𝜓
𝑅,𝑎−1,𝑖
𝑗,𝑘−ℓ𝑗−(𝑎−2)𝑁−1, 𝑘 = ℓ𝑗 + (𝑎 − 2)𝑁 + 1, . . . , ℓ𝑗 + (𝑎 − 1)𝑁,

(13)

where 𝑖 = 1, 2, . . . ,𝑀. IfΨ𝑖 is seen as a set of functions,
then Ψ𝑗 = {Ψ

1
𝑗
, . . . , Ψ

𝑀

𝑗
}.

Define

𝑃 := (

𝑃11 𝑃12

𝑃22

𝑃32 𝑃33

), (14)

where 𝑃11, 𝑃12, 𝑃22, 𝑃32, 𝑃33 are block matrices as follows:

𝑃11 = (

(

𝑃
𝐿

0,0 𝑃
𝐿

0,1 ⋅ ⋅ ⋅ 𝑃
𝐿

0,𝑁−1

𝑃
𝐿

1,0 𝑃
𝐿

1,1 ⋅ ⋅ ⋅ 𝑃
𝐿

1,𝑁−1

...
...

...

𝑃
𝐿

𝑁−1,0 𝑃
𝐿

𝑁−1,1 ⋅ ⋅ ⋅ 𝑃
𝐿

𝑁−1,𝑁−1

)

)

,

𝑃12 = (

(

𝑝
𝐿

0,0 ⋅ ⋅ ⋅ 𝑝
𝐿

0,𝑁1

𝑝
𝐿

1,0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝
𝐿

1,𝑎+𝑁1

... d

𝑝
𝐿

𝑁−1,0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝
𝐿

𝑁−1,𝜆+𝑁1

)

)

,
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𝑃22 = (

𝑃0 ⋅ ⋅ ⋅ 𝑃𝑎 ⋅ ⋅ ⋅ 𝑃𝛾1

𝑃0 ⋅ ⋅ ⋅ 𝑃𝑎 ⋅ ⋅ ⋅ 𝑃𝛾1

d d d d

𝑃0 ⋅ ⋅ ⋅ 𝑃𝑎 ⋅ ⋅ ⋅ 𝑃𝛾1

),

𝑃32 = (

p1

p2

...

p𝑎−1

),

𝑃33 = diag (P1,P2, . . . ,P𝑎−1) ,

p𝑖 =
(

(

𝑝
𝑅,𝑖

0,𝑁2
⋅ ⋅ ⋅ 𝑝

𝑅,𝑖

0,0

𝑝
𝑅,𝑖

1,𝑎+𝑁2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ

𝑅,𝑖

1,0

...
...

𝑝
𝑅,𝑖

𝑁−1,𝜆+𝑁2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝

𝑅,𝑖

𝑁−1,0

)

)

,

P𝑖 = (

𝑃
𝑅,𝑖

0,0 ⋅ ⋅ ⋅ 𝑃
𝑅,𝑖

0,𝑁−1

...
...

𝑃
𝑅,𝑖

𝑁−1,0 ⋅ ⋅ ⋅ 𝑃
𝑅,𝑖

𝑁−1,𝑁−1

),

𝑖 = 1, . . . , 𝑎 − 1.
(15)

Similarly, we can define

𝑄
𝑖
:= (

𝑄
𝑖

11 𝑄
𝑖

12

𝑄
𝑖

22

𝑄
𝑖

32 𝑄
𝑖

33

), 𝑖 = 1, 2, . . . ,𝑀, (16)

where 𝑄
𝑖

11, 𝑄
𝑖

12, 𝑄
𝑖

22, 𝑄
𝑖

32, 𝑄
𝑖

33 have the same form as 𝑃11, 𝑃12,
𝑃22, 𝑃32, 𝑃33, respectively.

Then, byTheorems 2 and 3, we have

√𝑎Φ𝑗 = 𝑃Φ𝑗+1,

√𝑎Ψ
𝑖

𝑗
= 𝑄

𝑖
Φ

𝑖

𝑗+1.
(17)

The Fourier transform of (17) is

√𝑎Φ̂𝑗 = 𝑃 (𝑧) Φ̂𝑗+1,

√𝑎Ψ̂
𝑖

𝑗
= 𝑄

𝑖
(𝑧) Φ̂

𝑖

𝑗+1,
(18)

where

𝑃 (𝑧) =
1
𝑎
𝐷

−1
𝑗
𝑃𝐷𝑗+1,

𝑄
𝑖
(𝑧) =

1
𝑎
𝐷

−1
𝑗
𝑄

𝑖
𝐷𝑗+1,

𝐷𝑗 = diag (𝑒𝑖𝜔(−𝑁)/𝑎
𝑗

𝐼𝑟, . . . , 𝑒
𝑖𝜔(ℓ𝑗+𝜆)/𝑎

𝑗

𝐼𝑟) .

(19)

With these 𝑃(𝑧), 𝑄𝑖
(𝑧), Φ𝑗, Ψ𝑗, 𝑖 = 1, 2, . . . ,𝑀, 𝑗 ≥ 𝑗0, we

will give the characterizations of MEMWFI.

Theorem 5. The following statements are equivalent:

(1) Ψ𝑗0
is a MEMWFI.

(2) For any |𝑧| = 1,

𝑎(𝑃 (𝑧)
∗
𝑃 (𝑧) +

𝑀

∑
𝑖=1

𝑄
𝑖
(𝑧)

∗
𝑄

𝑖
(𝑧)) = 𝐼|𝑠𝑗+1|𝑟. (20)

(3) For any𝑚, 𝑙 ∈ 𝑆𝑗+1,

∑
𝑘∈𝑆𝑗

(𝑃
∗

𝑘,𝑚
𝑃𝑘,𝑙 +

𝑀

∑
𝑖=1

𝑄
𝑖∗

𝑘,𝑚
𝑄

𝑖

𝑘,𝑙
)−𝑎𝛿𝑚,𝑙𝐼𝑟 = 0𝑟, (21)

where 𝑃𝑘,𝑚, 𝑄
𝑖

𝑘,𝑚
denote the 𝑟 × 𝑟 block matrices from

((𝑘 − 1)𝑟 + 1)th row to 𝑘𝑟th row and ((𝑚 − 1)𝑟 + 1)th
row to 𝑚𝑟th column in 𝑃,𝑄

𝑖, respectively, and 𝑃(𝑧)
∗

denotes the complex conjugate of the transpose of 𝑃(𝑧).

Proof. By usingTheorems 2 and 3, (11) can be rewritten as

∑
𝑘∈𝑆𝑗+1

𝑟

∑
𝜏=1

⟨𝑓, 𝜙𝜏,𝑗+1,𝑘⟩𝜙𝜏,𝑗+1,𝑘

= ∑
𝑘∈𝑆𝑗

𝑟

∑
𝜏=1

⟨𝑓, 𝜙𝜏,𝑗,𝑘⟩𝜙𝜏,𝑗,𝑘

+

𝑀

∑
𝑖=1

∑
𝑘∈𝑆𝑗

𝑟

∑
𝜏=1

⟨𝑓, 𝜓
𝑖

𝜏,𝑗,𝑘
⟩𝜓

𝑖

𝜏,𝑗,𝑘
.

(22)

For convenience, for every 𝑓 ∈ 𝐿
2
([0, 1]), we denote

⟨𝑓, 𝜙𝑗+1,𝑘⟩ as 𝑟 dimension column vector c𝑗+1,𝑘, where the
𝜏th component of c𝑗+1,𝑘 is ⟨𝑓, 𝜙𝜏,𝑗+1,𝑘⟩. Similarly, we denote
⟨𝑓, 𝜓

𝑖

𝑗+1,𝑘⟩ as 𝑟 dimension column vectors d𝑖

𝑗+1,𝑘. Then, the
former formula is equivalent to

∑
𝑘∈𝑆𝑗+1

⟨𝑓, 𝜙𝑗+1,𝑘⟩
𝑇

𝜙𝑗+1,𝑘

= ∑
𝑘∈𝑆𝑗

⟨𝑓, 𝜙𝑗,𝑘⟩
𝑇

𝜙𝑗,𝑘 +

𝑀

∑
𝑖=1

∑
𝑘∈𝑆𝑗

⟨𝑓, 𝜓
𝑖

𝑗,𝑘
⟩

𝑇

𝜓
𝑖

𝑗,𝑘

= ∑
𝑘∈𝑆𝑗

⟨𝑓,
1
√𝑎

∑
𝑙∈𝑆𝑗+1

𝑃𝑘,𝑙𝜙𝑗+1,𝑙⟩

𝑇

1
√𝑎

∑
𝑙∈𝑆𝑗+1

𝑃𝑘,𝑙𝜙𝑗+1,𝑙

+

𝑀

∑
𝑖=1

∑
𝑘∈𝑆𝑗

⟨𝑓,
1
√𝑎

∑
𝑙∈𝑆𝑗+1

𝑄
𝑖

𝑘,𝑙
𝜙𝑗+1,𝑙⟩

𝑇

1
√𝑎

∑
𝑙∈𝑆𝑗+1

𝑄
𝑖

𝑘,𝑙
𝜙𝑗+1,𝑙

=
1
𝑎

∑
𝑙∈𝑆𝑗+1

∑
𝑚∈𝑆𝑗+1

∑
𝑘∈𝑆𝑗

⟨𝑓, 𝜙𝑗+1,𝑚⟩
𝑇

(𝑃
∗

𝑘,𝑚
𝑃𝑘,𝑙 +

𝑀

∑
𝑖=1

𝑄
𝑖∗

𝑘,𝑚
𝑄

𝑖

𝑘,𝑙
)𝜙𝑗+1,𝑙,

(23)
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which is equivalent to

∑
𝑙∈𝑆𝑗+1

∑
𝑚∈𝑆𝑗+1

⟨𝑓, 𝜙𝑗+1,𝑚⟩
𝑇

⋅
{

{

{

∑
𝑘∈𝑆𝑗

(𝑃
∗

𝑘,𝑚
𝑃𝑘,𝑙 +

𝑀

∑
𝑖=1

𝑄
𝑖∗

𝑘,𝑚
𝑄

𝑖

𝑘,𝑙
)−𝑎𝛿𝑚,𝑙𝐼𝑟

}

}

}

𝜙𝑗+1,𝑙

= 0

(24)

or

∑
𝑙∈𝑆𝑗+1

∑
𝑚∈𝑆𝑗+1

⟨𝑓, 𝜙𝑗+1,𝑚⟩
𝑇

𝛼𝑚,𝑙𝜙𝑗+1,𝑙 = 0,

∀𝑓 ∈ 𝐿
2
([0, 1]) ,

(25)

where 𝛼𝑚,𝑙 = ∑
𝑘∈𝑆𝑗

(𝑃
∗

𝑘,𝑚
𝑃𝑘,𝑙 + ∑

𝑀

𝑖=1 𝑄
𝑖∗

𝑘,𝑚
𝑄

𝑖

𝑘,𝑙
) − 𝑎𝛿𝑚,𝑙𝐼𝑟.

We multiply the same identities in (20) by Φ̂𝑗+1(𝜔/𝑎), to
get

𝑎√𝑎(𝑃 (𝑧)
∗
Φ̂𝑗 (𝜔) +

𝑀

∑
𝑖=1

𝑄
𝑖
(𝑧)

∗
Ψ̂

𝑖

𝑗
(𝜔))

= Φ̂𝑗+1 (
𝜔

𝑎
) ,

(26)

and this is equivalent to

√𝑎((𝐷
−1
𝑗
𝑃𝐷𝑗+1)

∗

Φ̂𝑗 (𝜔)

+

𝑀

∑
𝑖=1

(𝐷
−1
𝑗
𝑄

𝑖
𝐷𝑗+1)

∗

Ψ̂
𝑖

𝑗
(𝜔)) = Φ̂𝑗+1 (

𝜔

𝑎
)

⇐⇒ 𝑃
∗√𝑎Φ𝑗 (𝑥) +

𝑀

∑
𝑖=1

(𝑄
𝑖
)
∗

√𝑎Φ𝑗 (𝑥)

= 𝑎Φ𝑗+1 (𝑥) ⇐⇒ 𝑃
∗
𝑃Φ𝑗+1 (𝑥)

+

𝑀

∑
𝑖=1

(𝑄
𝑖
)
∗

𝑄
𝑖
Φ𝑗+1 (𝑥) = 𝑎Φ𝑗+1 (𝑥) ⇐⇒ (𝑃

∗
𝑃

+

𝑀

∑
𝑖=1

(𝑄
𝑖
)
∗

𝑄
𝑖
)Φ𝑗+1 (𝑥) = 𝑎Φ𝑗+1 (𝑥)

(27)

or

∑
𝑚∈𝑆𝑗+1

𝛼𝑚,𝑙𝜙𝑗+1,𝑙 = 0, ∀𝑙 ∈ 𝑆𝑗+1. (28)

In otherwords, the proof of theoremcan be reduced to the
proof of the equivalence of (21) and (25). It is obvious that (21)
⇒ (28) ⇒ (25). To show (25) ⇒ (21), take any 𝑓 ∈ 𝐿

2
([0, 1])

and define

𝛽𝑙 (𝑓) := ∑
𝑚∈𝑆𝑗+1

⟨𝑓, 𝜙𝑗+1,𝑚⟩
𝑇

𝛼𝑚,𝑙, ∀𝑙 ∈ 𝑆𝑗+1. (29)

The Fourier transform of (25) is

∑
𝑙∈𝑆𝑗+1

𝛽𝑙 (𝑓) 𝑒
−𝑖𝑙𝜔/𝑎

𝑗+1
= 0. (30)

Then 𝛽𝑙(𝑓) = 0, ∀𝑙 ∈ 𝑆𝑗+1; that is,

⟨𝑓, ∑
𝑚∈𝑆𝑗+1

𝛼
∗

𝑚,𝑙
𝜙𝑗+1,𝑚⟩ = 0, 𝑙 ∈ 𝑆𝑗+1. (31)

Because 𝑓 ∈ 𝐿
2
([0, 1]) is a compact support function,

𝛽𝑙 (𝑓) = 0, ∀𝑙 ∈ 𝑆𝑗+1, ∀𝑓 ∈ 𝐿
2
([0, 1]) ; (32)

that is,

⟨𝑓, ∑
𝑚∈𝑆𝑗+1

𝛼
∗

𝑚,𝑙
𝜙𝑗+1,𝑚⟩ = 0,

𝑙 ∈ 𝑆𝑗+1, ∀𝑓 ∈ 𝐿
2
([0, 1]) .

(33)

Then, we can get

∑
𝑚∈𝑆𝑗+1

𝛼𝑚,𝑙𝜙𝑗+1,𝑚 = 0, 𝑙 ∈ 𝑆𝑗+1, (34)

and this is equivalent to 𝛼𝑚,𝑙 = 0𝑟, ∀𝑚, 𝑙 ∈ 𝑆𝑗+1.
Related to the proof, 0 is zero vector with appropriate size,

and 0𝑟 is 𝑟 × 𝑟 zero matrix.

Theorem 5 characterizes the necessary and sufficient
condition for the existence of the MEMWFI associated with
𝜙. But it is not a good choice to use this theorem to construct
MEMWFI with arbitrary dilation 𝑎. For convenience, we
need to present some algorithms of constructing MEMWFI.

2.3. Algorithms of Constructing MEMWFI. With matrices
𝑃,𝑄

𝑖
, 𝑖 = 1, 2, . . . ,𝑀, we formulate the following block

matrix:

M = (𝑃
∗
, 𝑄

1∗
, 𝑄

2∗
, . . . , 𝑄

𝑀∗
) , (35)

and then, (21), the characterization of MEMWFI, can be
rewritten as

MM
∗
= 𝑎𝐼|𝑆𝑗0 |𝑟

. (36)

Now we present two algorithms of constructing
MEMWFI starting from a multiscaling function and a scalar
scaling function, respectively.

Algorithm 1. (1) Take a proper multiscaling function 𝜙(𝑥).
(2) Calculate the parameters 𝛾, 𝛾1, 𝑁 = [𝛾/𝑎], 𝑗0 =

⌈log
𝑎
𝛾⌉,𝑁1, 𝑁2.

(3) Choose proper coefficient matrices 𝐶𝑘,𝑛, 0 ≤ 𝑘 ≤ 𝑁 −

1, −𝛾+1 ≤ 𝑛 ≤ 𝑘−𝑁 and𝐶
𝑠

𝑘,𝑛
, 0 ≤ 𝑘 ≤ 𝑁−1, 𝑎𝑗0 −𝛾+1+𝑘 ≤

𝑛 ≤ 𝑎
𝑗0−1, 1 ≤ 𝑠 ≤ 𝑎−1, and construct boundarymultiscaling

functions using (5); in addition, we can get Φ𝑗0
.
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(4) UseTheorem 2, ascertain coefficient matrices𝑃𝐿

𝑘,𝑛
, 0 ≤

𝑘, 𝑛 ≤ 𝑁−1; 𝑝𝐿

𝑘,𝑛
, 0 ≤ 𝑘 ≤ 𝑁−1, 0 ≤ 𝑛 ≤ 𝑎𝑘+𝑁1 and 𝑝

𝑅,𝑠

𝑘,𝑛
, 0 ≤

𝑘 ≤ 𝑁−1, 0 ≤ 𝑛 ≤ 𝑎𝑘+𝑁2; 𝑃
𝑅,𝑠

𝑘,𝑛
, 0 ≤ 𝑘, 𝑛 ≤ 𝑁−1; 1 ≤ 𝑠 ≤ 𝑎−1

to get the block matrix 𝑃.
(5) Take coefficient matrices 𝑄

𝐿,𝑖

𝑘,𝑛
, 0 ≤ 𝑘, 𝑛 ≤ 𝑁 −

1; 𝑞𝐿,𝑖

𝑘,𝑛
, 0 ≤ 𝑘 ≤ 𝑁 − 1, 0 ≤ 𝑛 ≤ 𝑎𝑘 + 𝑁1; 𝑄

𝑖

𝑛
, 0 ≤ 𝑛 ≤ 𝛾1

and 𝑞
𝑅,𝑠,𝑖

𝑘,𝑛
, 0 ≤ 𝑘 ≤ 𝑁 − 1, 0 ≤ 𝑛 ≤ 𝑎𝑘 + 𝑁2; 𝑄

𝑅,𝑠,𝑖

𝑘,𝑛
, 0 ≤ 𝑘, 𝑛 ≤

𝑁−1; 1 ≤ 𝑠 ≤ 𝑎−1, 1 ≤ 𝑖 ≤ 𝑀 to construct the blockmatrixes
𝑄

𝑖
, 𝑖 = 1, . . . ,𝑀, and ensure that they satisfy (21) with 𝑃.
(6) Use the coefficient matrices 𝑄

𝑖 which we have got
in step (5) to construct MEMWFI Ψ𝑗0

= {Ψ
1
𝑗0
, . . . , Ψ

𝑀

𝑗0
}, by

Theorem 3.
(7) Draw the graphs of Φ𝑗0

and Ψ𝑗0
by Matlab.

Algorithm 2. (1) Take a proper scalar scaling function 𝜑(𝑥)

(the quadratic sum of recursion coefficients can not be larger
than 1).

(2) Use 𝜑(𝑥) to get refinable vector-valued function 𝜙(𝑥);
for example,

𝜙 (𝑥) = (𝜑 (𝑥) , 𝜑 (𝑥) , . . . , 𝜑 (𝑥))
𝑇

𝑟
,

𝜙 (𝑥) = (𝜑 (𝑥) , 𝜑 (𝑥 − 1) , . . . , 𝜑 (𝑥 − 𝑟 + 1))𝑇 ,

𝜙 (𝑥) = (𝜑 (𝑎𝑥) , 𝜑 (𝑎𝑥 − 1) , . . . , 𝜑 (𝑎𝑥 − 𝑟 + 1))𝑇 ,

(37)

and so on; we can find the sequence of matrices {𝑃𝑘} which
satisfies refinable equation with 𝜙. We should know that
the necessary and sufficient conditions for MEMWFI in
Theorem 5 reduce to sufficient conditions when the set of
components in the vector-valued function 𝜙(𝑥) is linearly
dependent.

(3) Turn to steps (3)–(7) of Algorithm 1.

We should note that the refinable vector-valued function
𝜙 in Algorithm 2 can not be a multiscaling function.

2.4. Decomposition Formula and Reconstruction Formula of
MEMWFI. The decomposition formula and reconstruction
formula of MEMWFI are obtained by Theorems 2, 3, and
5, which are similar to those of orthogonal wavelets or

multiwavelets on the interval. Firstly, for ∀𝑓 ∈ 𝐿
2
([0, 1]),

denote
c𝑗,𝑘 = ⟨𝑓, 𝜙𝑗,𝑘⟩ ,

c𝐿
𝑗,𝑘

= ⟨𝑓, 𝜙
𝐿

𝑗,𝑘
⟩ ,

c𝑅,𝑠

𝑗,𝑘
= ⟨𝑓, 𝜙

𝑅,𝑠

𝑗,𝑘
⟩ ,

d𝑖

𝑗,𝑘
= ⟨𝑓, 𝜓

𝑖

𝑗,𝑘
⟩ ,

d𝐿,𝑖

𝑗,𝑘
= ⟨𝑓, 𝜓

𝐿,𝑖

𝑗,𝑘
⟩ ,

d𝑅,𝑠,𝑖

𝑗,𝑘
= ⟨𝑓, 𝜓

𝑅,𝑠,𝑖

𝑗,𝑘
⟩

𝑖 = 1, . . . ,𝑀; 𝑠 = 1, . . . , 𝑎 − 1.

(38)

Theorem 6. The decomposition formula of MEMWFI is

√𝑎c𝐿
𝑗,𝑘

=

𝑁−1
∑
𝑛=0

𝑃
𝐿

𝑘,𝑛
c𝐿
𝑗+1,𝑛 +

𝑎𝑘+𝑁1

∑
𝑛=0

𝑝
𝐿

𝑘,𝑛
c𝐿
𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1

√𝑎c𝑗,𝑘 =

𝑎𝑘+𝛾1

∑
𝑛=𝑎𝑘

𝑃𝑛−𝑎𝑘c𝑗+1,𝑛, 0 ≤ 𝑘 ≤ 𝑎
𝑗
− 𝛾

√𝑎c𝑅,𝑠

𝑗,𝑘
=

𝑎𝑘+𝑁2

∑
𝑛=0

𝑝
𝑅,𝑠

𝑘,𝑛
c𝑗+1,𝑎𝑗+1−𝛾−𝑛 +

𝑎𝑘+𝑁1

∑
𝑛=0

𝑃
𝑅,𝑠

𝑘,𝑛
c𝑅,𝑠

𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑠 ≤ 𝑎 − 1

√𝑎d𝐿,𝑖

𝑗,𝑘
=

𝑁−1
∑
𝑛=0

𝑄
𝐿,𝑖

𝑘,𝑛
c𝐿
𝑗+1,𝑛 +

𝑎𝑘+𝑁1

∑
𝑛=0

𝑞
𝐿,𝑖

𝑘,𝑛
c𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1

√𝑎d𝑖

𝑗,𝑘
=

𝑎𝑘+𝛾1

∑
𝑛=𝑎𝑘

𝑄
𝑖

𝑛−𝑎𝑘
c𝑗+1,𝑛, 0 ≤ 𝑘 ≤ 𝑎

𝑗
− 𝛾

√𝑎d𝑅,𝑠,𝑖

𝑗,𝑘
=

𝑎𝑘+𝑁2

∑
𝑛=0

𝑞
𝑅,𝑠,𝑖

𝑘,𝑛
c𝑗+1,𝑎𝑗+1−𝛾−𝑛 +

𝑁−1
∑
𝑛=0

𝑄
𝑅,𝑠,𝑖

𝑘,𝑛
c𝑅,𝑠

𝑗+1,𝑛,

0 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑠 ≤ 𝑎 − 1, 𝑖 = 1, . . . ,𝑀,

(39)

and the reconstruction formula of MEMWFI is

√𝑎c𝐿
𝑗+1,𝑛 =

𝑁−1
∑
𝑘=0

𝑃
𝐿

𝑘,𝑛
c𝐿
𝑗,𝑘

+

𝑀

∑
𝑖=1

𝑁−1
∑
𝑘=0

𝑄
𝐿,𝑖

𝑘,𝑛
d𝐿,𝑖

𝑗,𝑘
, 0 ≤ 𝑛 ≤ 𝑁 − 1

√𝑎c𝑅,𝑠

𝑗+1,𝑛 =

𝑁−1
∑
𝑘=0

𝑃
𝑅,𝑠

𝑘,𝑛
c𝑅,𝑠

𝑗,𝑘
+

𝑀

∑
𝑖=1

𝑁−1
∑
𝑘=0

𝑄
𝐿,𝑠,𝑖

𝑘,𝑛
d𝐿,𝑠,𝑖

𝑗,𝑘
, 0 ≤ 𝑛 ≤ 𝑁 − 1, 1 ≤ 𝑠 ≤ 𝑎 − 1

√𝑎c𝑗+1,𝑛 =

𝑁−1
∑
𝑘=0

𝑝
𝐿

𝑘,𝑛
c𝐿
𝑗,𝑘

+

𝑀

∑
𝑖=0

𝑁−1
∑
𝑘=0

𝑞
𝐿

𝑘,𝑛
d𝐿,𝑖

𝑗,𝑘
+∑

𝑘

𝑃𝑛−𝑎𝑘c𝑗,𝑘 +
𝑀

∑
𝑖=1

∑
𝑘

𝑄
𝑖

𝑛−𝑎𝑘
d𝑖

𝑗,𝑘
, 0 ≤ 𝑛 ≤ 𝑁1
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√𝑎c𝑗+1,𝑛 = √𝑎c𝑗+1,𝑁1+𝑎𝑙+𝑛 =

𝑁−1
∑

𝑘=𝑙+1
𝑝

𝐿

𝑘,𝑁1+𝑎𝑙+𝑛
c𝐿
𝑗,𝑘

+

𝑀

∑
𝑖=1

𝑁−1
∑

𝑘=𝑙+1
𝑞
𝐿

𝑘,𝑁1+𝑎𝑙+𝑛
d𝐿,𝑖

𝑗,𝑘
+∑

𝑘

𝑃𝑁1+𝑛+𝑎(𝑙−𝑘)c𝑗,𝑘 +
𝑀

∑
𝑖=1

∑
𝑘

𝑄
𝑖

𝑁1+𝑛+𝑎(𝑙−𝑘)
d𝑖

𝑗,𝑘
,

0 ≤ 𝑙 ≤ 𝑁 − 2, 1 ≤ 𝑛

≤ 𝑎, 𝑁1 + 1 ≤ 𝑛 ≤ 𝑎 (𝑁 − 1) + 𝑁1

√𝑎c𝑗+1,𝑛 = ∑
𝑘

𝑃𝑛−𝑎𝑘c𝑗,𝑘 +
𝑀

∑
𝑖=1

∑
𝑘

𝑄
𝑖

𝑛−𝑎𝑘
d𝑖

𝑗,𝑘
, (𝑎 − 1) 𝛾 − 𝑎 + 1 ≤ 𝑛 ≤ 𝑎

𝑗+1
− 𝑎𝛾 + 𝑎 − 1

(40)

√𝑎c𝑗+1,𝑛 = √𝑎c𝑗+1,(𝑁−1−𝑙)𝑎+𝑁2−𝑛+(𝑎𝑗+1−𝑎𝛾+𝑎)

=

𝑎−1
∑
𝑠=1

𝑁−1
∑

𝑘=𝑙+1
𝑝

𝑅,𝑠

𝑘,(𝑁−1−𝑙)𝑎+𝑁2−𝑛
c𝑅,𝑠

𝑗,𝑘
+

𝑀

∑
𝑖=1

𝑎−1
∑
𝑠=1

𝑁−1
∑

𝑘=𝑙+1
𝑞
𝑅,𝑠,𝑖

𝑘,(𝑁−1−𝑙)𝑎+𝑁2−𝑛
d𝑅,𝑠,𝑖

𝑗,𝑘
+∑

𝑘

𝑃(𝑁−1−𝑙−𝑘)𝑎+𝑁2−𝑛+(𝑎𝑗+1−𝑎𝛾+𝑎)c𝑗,𝑘

+

𝑀

∑
𝑖=1

∑
𝑘

𝑄
𝑖

(𝑁−1−𝑙−𝑘)𝑎+𝑁2−𝑛+(𝑎𝑗+1−𝑎𝛾+𝑎)
d𝑖

𝑗,𝑘
,

0 ≤ 𝑙 ≤ 𝑁 − 2, 0 ≤ 𝑛

≤ 𝑎 − 1, 𝑎

𝑗+1
− 𝑎𝛾 + 𝑎 ≤ 𝑛 ≤ 𝑎

𝑗+1
− 𝑎𝛾 + 𝑎𝑁 − 1

(41)

√𝑎c𝑗+1,𝑛 =

𝑎−1
∑
𝑠=1

𝑁−1
∑
𝑘=0

𝑝
𝑅,𝑠

𝑘,𝑎𝑗+1−𝛾−𝑛
c𝑅,𝑠

𝑗,𝑘
+

𝑀

∑
𝑖=1

𝑎−1
∑
𝑠=1

𝑁−1
∑
𝑘=0

𝑞
𝑅,𝑠,𝑖

𝑘,𝑎𝑗+1−𝛾−𝑛
d𝑅,𝑠,𝑖

𝑗,𝑘
+∑

𝑘

𝑃𝑛−𝑎𝑘c𝑗,𝑘 +
𝑀

∑
𝑖=1

∑
𝑘

𝑄
𝑖

𝑛−𝑎𝑘
d𝑖

𝑗,𝑘
,

𝑎
𝑗+1

− 𝑎𝛾 + 𝑎𝑁 ≤ 𝑛 ≤ 𝑎
𝑗+1

− 𝛾.

(42)

Proof. The decomposition formula can be obtained byTheo-
rems 2 and 3, and the reconstruction formula is gotten from
Theorems 2, 3, and 5.

3. Numerical Examples

In this section, we present some numerical examples to
show the effectiveness of the proposed algorithmwith dilator
factors 𝑎 = 2, 𝑎 = 3.

𝑁
𝑎

𝑚
(𝑥) is𝑚th order cardinal B-spline with dilation factor

𝑎; the refinement equation of𝑁𝑎

𝑚
(𝑥) is the following:

�̂�
𝑎

𝑚
(𝜔) = ℎ

𝑎

𝑚
(𝑧) �̂�

𝑎

𝑚
(
𝜔

𝑎
) ,

ℎ
𝑎

𝑚
(𝑧) = (

1 + 𝑧 + ⋅ ⋅ ⋅ + 𝑧
𝑎−1

𝑎
)

𝑚

,

(43)

where 𝑧 = 𝑒
−𝑖𝜔/𝑎.

3.1. 𝑎 = 2

Example 1. With 𝑎 = 2, the symbol of the B-spline𝑁2
2 (𝑥) is

ℎ
2
2 (𝑧) =

1
4
+
1
2
𝑧 +

1
4
𝑧
2
. (44)

Take 𝜙1(𝑥) = 𝑁2(𝑥), 𝜙2(𝑥) = 𝑁2(𝑥 − 1), 𝜙(𝑥) = (𝜙1(𝑥),

𝜙2(𝑥))
𝑇, and 𝜙(𝑥) satisfies

𝜙 (𝑥) =
1
2
{(

1 1
0 0

)𝜙 (2𝑥) +(
1 1
0 0

)𝜙 (2𝑥− 1)

+(
0 0
1 1

)𝜙 (2𝑥− 2) +(
0 0
1 1

)𝜙 (2𝑥− 3)} .

(45)

In fact, for 𝜙(𝑥), we can choose different set of coefficient
matrices such that it satisfies the above equation.

Let 𝛾 = 3 = 𝛾1, 𝑁 = [𝛾/𝑎] = 1, 𝑗0 = ⌈log
𝑎
𝛾⌉ = 2.

Taking 𝐶0,−2 = 𝐶
1
0,3 = 02, 𝐶0,−1 = 𝐶

1
0,2 = 𝐼2, 𝑀 = 3. Then,

we can obtain a set of multiscaling functions on the interval
by Theorem 2 and coefficient matrices by Theorem 5,

𝑃 =
1
2

(
(
(
(
(
(
(
(
(
(
(

(

1 1 0 0 0 0

0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0

0 0 0 0 1 1

)
)
)
)
)
)
)
)
)
)
)

)

,
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𝑄
1
=
1
2

(
(
(
(
(
(
(
(
(
(
(

(

1 −1 0 0 0 0

0 0 1 −1 1 −1

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

−1 1 −1 1 0 0

0 0 0 0 −1 1

)
)
)
)
)
)
)
)
)
)
)

)

,

𝑄
2
=
1
2

(
(
(
(
(

(

√3𝐼2
−2 0 2 0

0 −√2 0 √2
−2 0 2 0

0 −√2 0 √2
−2𝐼2 2𝐼2 0𝐼2

)
)
)
)
)

)

,

𝑄
3
=
1
2

(
(
(
(
(
(

(

√3𝐼2
0 0 0 0

0 −√2 0 √2
0 0 0 0

0 −√2 0 √2

0𝐼2 0𝐼2 √6𝐼2

)
)
)
)
)
)

)

.

(46)

The graphs of 𝜙, left (right) boundary multiscaling func-
tions, and MEMWFI are showed in Figure 1.

The graphs of the first row in Figure 1 are the multiscaling
function 𝜙 and its boundary multiscaling functions, and the
rest of rows belong to MEMWFI associated with 𝜙.

We can discover from Figure 1 that each component of
multiscaling function and MEMWFI is (anti)symmetrical.
The boundary multiscaling functions have advantages of
simple structure and some of them are (anti)symmetric.

Example 2. With 𝑎 = 2, the symbol of 3rd order B-spline
𝑁

2
3 (𝑥) is

ℎ
2
3 (𝑧) =

1
8
+
3
8
𝑧 +

3
8
𝑧
2
+
1
8
𝑧
3
. (47)

Take 𝜙1(𝑥) = 𝑁3(2𝑥), 𝜙2(𝑥) = 𝑁3(2𝑥 − 1), 𝜙(𝑥) = (𝜙1(𝑥),

𝜙2(𝑥))
𝑇, and 𝜙 satisfies

𝜙 (𝑥) =
1
4
{(

1 3
0 0

)𝜙 (2𝑥) +(
3 1
1 3

)𝜙 (2𝑥− 1)

+(
0 0
3 1

)𝜙 (2𝑥− 2)} .

(48)

Certainly, for 𝜙(𝑥), we can choose different set of coeffi-
cient matrices such that it satisfies the above equation.

Let 𝛾 = 2 = 𝛾1, 𝑁 = [𝛾/𝑎] = 1, 𝑗0 = ⌈log
𝑎
𝛾⌉ = 1. Taking

𝐶0,−1 = 𝐶
1
0,1 = (1/3)𝐼2, 𝑀 = 4. By Theorems 2 and 5, we can

obtain that

𝑃 =
1
4

(
(
(
(
(
(

(

3 1 0 0

1 3 1 1
3

1 3 3 1 0 0
0 0 1 3 3 1

1
3

1 3 1
0 0 1 3

)
)
)
)
)
)

)

,
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𝑄
1
=
1
4

(
(
(
(
(
(
(
(
(

(

3 −2 −
1
3

−
1
9

0 11
3

−1 −
1
3

1 −3 3 −1 0 0
0 0 −1 3 −3 1

−
1
3

−1 11
3

0

−
1
9

−
1
3

−2 3

)
)
)
)
)
)
)
)
)

)

,

𝑄
2
=
1
4

(
(
(
(
(
(
(
(
(
(
(

(

√6 0 √
286
27

0

0 0 √
19
27

−√
19
27

√3 0 −√12 0 √3 0

0 √3 0 −√12 0 √3

−√
19
27

√
19
27

0 0

0 √
286
27

0 √6

)
)
)
)
)
)
)
)
)
)
)

)

,

𝑄
3
=
1
4

(
(
(
(
(
(
(
(
(
(
(

(

√6 0 −√
286
27

0

0 √
32
9

0 0
√3 0 0 0 −√3 0

0 −√3 0 0 0 √3

0 0 √
32
9

0

0 −√
286
27

0 √6

)
)
)
)
)
)
)
)
)
)
)

)

,

𝑄
4
=
1
4

(
(
(
(
(
(
(

(

1 0
0 1

0 √
286
81

0 0 √
286
81

0

0 √
286
81

0 0 −√
286
81

0
1 0
0 1

)
)
)
)
)
)
)

)

.

(49)

The graphs of 𝜙, left (right) boundary multiscaling func-
tions, and MEMWFI are showed in Figure 2.

The graphs of the first row in Figure 2 are multiscaling
function 𝜙 and left (right) boundary multiscaling functions,
and the rest of graphs belong to MEMWFI.

We can discover from Figure 2 that each component of
multiscaling function and MEMWFI is (anti)symmetric and
smooth in this example. Left (right) boundary multiscaling
functions are smooth and some of them are (anti)symmetric.

Every pair of left boundary multiscaling functions and right
boundary multiscaling functions are mutually symmetric.

Example 3. Theprevious two examples are constructed when
𝑟 = 2; we will give an example based on B-spline with 𝑟 = 3
here.

With 𝑎 = 2, the symbol of 4th order B-spline𝑁2
4 (𝑥) is

ℎ
2
4 (𝑧) =

1
16

+
4
16

𝑧 +
6
16

𝑧
2
+

4
16

𝑧
3
+

1
16

𝑧
4
. (50)
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Figure 1: Graphs of multiscaling function and left (right) boundary multiscaling functions and MEMWFI with dilation factor 2 and
multiplicity 2.

Take 𝜙1(𝑥) = 𝑁4(3𝑥), 𝜙2(𝑥) = 𝑁4(3𝑥 − 1), 𝜙3(𝑥) = 𝑁4(3𝑥 −

2), 𝜙(𝑥) = (𝜙1(𝑥), 𝜙2(𝑥), 𝜙3(𝑥))
𝑇, and 𝜙 satisfies

𝜙 (𝑥) =
1
8

{{

{{

{

(

1 4 6
0 0 1
0 0 0

)𝜙 (2𝑥)

+(

4 1 0
4 6 4
0 1 4

)𝜙 (2𝑥− 1) +(

0 0 0
1 0 0
6 4 1

)𝜙 (2𝑥− 2)
}}

}}

}

.

(51)
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Figure 2: Graphs of multiscaling function and left (right) boundary multiscaling functions and MEMWFI with dilation factor 2 and
multiplicity 2.
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Let 𝛾 = 2 = 𝛾1, 𝑁 = [𝛾/𝑎] = 1, 𝑗0 = ⌈log
𝑎
𝛾⌉ = 1. Taking

𝐶0,−1 = 𝐶
1
0,1 = (1/4)𝐼2,𝑀 = 6. Then, by Theorems 2 and 5,

we can get that

𝑃

=
1
8

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

4 1 0 0 0 0

4 6 4 1
4

0 0

0 1 4 6
4

4
4

1
4

1 4 6 4 1 0 0 0 0
0 0 1 4 6 4 1 0 0
0 0 0 0 1 4 6 4 1

1
4

4
4

6
4

4 1 0

0 0 1
4

4 6 4
0 0 0 0 1 4

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)9×15

,

(𝑄
1
11, 𝑄

1
12) =

1
8
(

√19 0 0 0 0 0

2 3 2 −
1
2

0 0

0 1
2

2 −
6
2

−
4
2

−
1
2

),

𝑄
1
22 =

1
8
(

0 0 0 −√14 √14 0 0 0 0

0 0 0 2√2 0 −2√2 0 0 0

0 0 0 0 √14 −√14 0 0 0

),

(𝑄
1
32, 𝑄

1
33) =

1
8
(

−
1
2

−
4
2

−
6
2

2 1
2

0

0 0 −
1
2

2 3 2

0 0 0 0 0 √19

),

(𝑄
2
11, 𝑄

2
12) =

1
8
(

√34 −√34 0 0 0 0
√20 0 −√20 0 0 0

0 −√35 √35 0 0 0

),

𝑄
2
22 =

1
8
(

4
7

16
7

4 −7 0 0 0 0 0

0 0 0 0 2√2 0 0 0 0

0 0 0 0 0 −7 4 16
7

4
7

),

(𝑄
2
32, 𝑄

2
33) =

1
8
(

0 0 0 √35 −√35 0

0 0 0 −√20 0 √20

0 0 0 0 −√34 √34

),

(𝑄
3
11, 𝑄

3
12) =

1
8
(

(

0 0 0 √
15
2

−√
15
2

0

0 0 0 √
15
8

0 −√
15
8

0 0 0 0 √
5
4

−√
5
4

)

)

,

𝑄
3
22 =

1
8
(

1
3

4
3

4 0 −3 0 0 0 0

0 0 0 0 2√2 0 0 0 0

0 0 0 0 −3 0 4 4
3

1
3

),

(𝑄
3
32, 𝑄

3
33) =

1
8
(

(

−√
5
4

√
5
4

0 0 0 0

−√
15
8

0 √
15
8

0 0 0

0 −√
15
2

√
15
2

0 0 0

)

)

,

(𝑄
4
11, 𝑄

4
12) =

1
8
(

√19 0 0 0 0 0

0 √
47
4

0 0 0 0

0 0 √33 0 0 0

),

𝑄
4
22 =

1
8
(

0 0 0 √3 0 0 −
4
√3

0 0

0 0 1 0 0 0 −1 0 0

0 0 −
4
√3

0 0 √3 0 0 0

),

(𝑄
4
32, 𝑄

4
33) =

1
8
(

0 0 0 √33 0 0

0 0 0 0 √
47
4

0

0 0 0 0 0 √19

),

𝑄
5
22 =

1
8
(

0 0 0 −√7 √7 0 0 0 0
0 0 0 2 0 −2 0 0 0

0 0 0 0 −√7 √7 0 0 0

),

(𝑄
5
11, 𝑄

5
12) =

1
8
(

(

0 0 0 √
2536
441

−√
2536
441

0

0 0 0 √
202
21

0 −√
202
21

0 0 0 0 −√
808
21

√
808
21

)

)

,

(𝑄
5
32, 𝑄

5
33) =

1
8
(

(

√
808
21

−√
808
21

0 0 0 0

−√
202
21

0 √
202
21

0 0 0

0 −√
2536
441

√
2536
441

0 0 0

)

)

,

(𝑄
6
11, 𝑄

6
12) =

1
8
(

(

0 0 0 √
636841
7056

0 0

0 0 0 0 √
82945
1764

0

0 0 0 0 0 √
127
112

)

)

,

𝑄
6
22 =

1
8
(

0 0 0 −√7 √7 0 0 0 0
0 0 0 2 0 −2 0 0 0

0 0 0 0 −√7 √7 0 0 0

),

(𝑄
6
32, 𝑄

6
33) =

1
8
(

(

√
127
112

0 0 0 0 0

0 √
82945
1764

0 0 0 0

0 0 √
636841
7056

0 0 0

)

)

,

𝑄
𝑖
= (

𝑄
𝑖

11 𝑄
𝑖

12

𝑄
𝑖

22

𝑄
𝑖

32 𝑄
𝑖

33

)

9×15

, 𝑖 = 1, 2, . . . , 6.

(52)

The graphs of 𝜙, left (right) boundary multiscaling func-
tions, and MEMWFI are showed in Figure 3.
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Figure 3: Continued.
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Figure 3: Graphs of multiscaling function and left (right) boundary multiscaling functions and MEMWFI with dilation factor 2 and
multiplicity 3.

The graphs of the first row in Figure 3 are multiscaling
function 𝜙 and left (right) boundary multiscaling functions,
and the rest rows belong to MEMWFI.

We can discover from Figure 3 that each component of
multiscaling function and MEMWFI is (anti)symmetric and
smooth in this example. Left (right) boundary multiscaling
functions are smooth and some of them are (anti)symmetric.
Every pair of left boundary multiscaling functions and right
boundary multiscaling functions are mutually symmetric.

3.2. 𝑎 = 3

Example 4. We will construct this numerical example based
on 2nd B-spline𝑁2(𝑥). With 𝑎 = 3, the symbol of𝑁3

2 (𝑥) is

ℎ
3
2 (𝑧) =

1 + 2𝑧 + 3𝑧2 + 2𝑧3 + 𝑧
4

9
. (53)

Take 𝜙1(𝑥) = 𝑁2(𝑥), 𝜙2(𝑥) = 𝑁2(𝑥 − 1), 𝜙(𝑥) = (𝜙1(𝑥),

𝜙2(𝑥))
𝑇, and 𝜙 satisfies

𝜙 (𝑥) =
1
3
{(

1 0
0 0

)𝜙 (3𝑥) +(
2 0
0 0

)𝜙 (3𝑥− 1)

+(
3 0
0 1

)𝜙 (3𝑥− 2) +(
2 0
0 2

)𝜙 (3𝑥− 3)

+(
1 0
0 3

)𝜙 (3𝑥− 4) +(
0 0
0 2

)𝜙 (3𝑥− 5)

+(
0 0
0 1

)𝜙 (3𝑥− 6)} .

(54)

In fact, we have other choices to get the refinable equa-
tions associated with 𝜙.

Let 𝛾 = 3, 𝛾1 = (𝑎−1)𝛾 = 6, 𝑁 = [𝛾/𝑎] = 1, 𝑗0 = ⌈log
𝑎
𝛾⌉ =

1. Taking

𝐶0,−2 = 𝐶
1
0,2 = 𝐶

2
0,2 = 02,

𝐶0,−1 = √2𝐶1
0,1 = √2𝐶2

0,1 =
1
2
𝐼2,

(55)

where 02 denotes 2 × 2 zero matrix, 𝐼2 denotes 2 × 2 unit
matrix. Then, we can construct MEMWFI byTheorem 2 and
Theorem 5 (see Figure 4). It is so lengthy that we do not
write the expression of 𝑃,𝑄

1
, 𝑄

2
, 𝑄

3
, 𝑄

4
, 𝑄

5
, 𝑄

6 here. The
graphs of 𝜙, left (right) boundary multiscaling functions, and
MEMWFI are showed in Figure 4.

The graphs of the first row in Figure 4 are multiscaling
function 𝜙 and its left (right) boundary multiscaling func-
tions, and the rest of rows belong to MEMWFI.

We can discover from Figure 4 that each component of
multiscaling function and MEMWFI is (anti)symmetric in
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Figure 4: Continued.
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Figure 4: Graphs of multiscaling function and left (right) boundary multiscaling functions and MEMWFI with dilation factor 3 and
multiplicity 2.

this example. Left (right) boundary multiscaling functions
have advantages of simple structure and some of them are
(anti)symmetric. The second right boundary multiscaling
function has the same graph with the first.

Example 5. We will construct this numerical example based
on 3rd B-spline𝑁3(𝑥). With 𝑎 = 3, the symbol of𝑁3

3 (𝑥) is

ℎ
3
3 (𝑧) =

1 + 3𝑧 + 6𝑧2 + 7𝑧3 + 6𝑧4 + 3𝑧5 + 𝑧
6

27
. (56)

Take 𝜙1(𝑥) = 𝑁3(𝑥), 𝜙2(𝑥) = 𝑁3(𝑥), 𝜙(𝑥) = (𝜙1(𝑥), 𝜙2(𝑥))
𝑇,

and 𝜙 satisfies

𝜙 (𝑥) =
1
9
{(

1 0
0 1

)𝜙 (3𝑥) +(
3 0
0 3

)𝜙 (3𝑥− 1)

+(
6 0
0 6

)𝜙 (3𝑥− 2) +(
7 0
0 7

)𝜙 (3𝑥− 3)

+(
6 0
0 6

)𝜙 (3𝑥− 4) +(
3 0
0 3

)𝜙 (3𝑥− 5)

+(
1 0
0 1

)𝜙 (3𝑥− 6)} .

(57)

Certainly, we have other choices to get the refinable
equations associated with 𝜙. The components of the multi-
scaling function are linear dependence. It does not satisfy

the assumption in Section 2. The sufficient and necessary
conditions for minimum-energy frames inTheorem 5 reduce
to sufficient conditions. We can still use Theorem 5 to get
MEMWFI.

Now 𝛾 = 3, 𝛾1 = (𝑎 − 1)𝛾 = 6, 𝑁 = [𝛾/𝑎] = 1, 𝑗0 =

⌈log
𝑎
𝛾⌉ = 1. Take

𝐶0,−2 = 𝐶
1
0,2 = 𝐶

2
0,2 = 02,

𝐶0,−1 = √2𝐶1
0,1 = √2𝐶2

0,1 =
1
3
𝐼2.

(58)

Then, we can construct MEMWFI by Theorem 2 and
Theorem 5 (see Figure 5). It is so lengthy that we do not write
the expression of 𝑃,𝑄1

, 𝑄
2
, 𝑄

3
, 𝑄

4
, 𝑄

5
, 𝑄

6
, 𝑄

7
, 𝑄

8 here. The
graphs of 𝜙, left (right) boundary multiscaling functions, and
MEMWFI are showed in Figure 5.

The graphs of the first row in Figure 5 are 𝜙 and its left
(right) boundary multiscaling functions, and the rest of rows
belong to MEMWFI associated with 𝜙.
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