322 research outputs found

    TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex

    Get PDF
    •TNF deficiency alters the spatial organization of neurogenic zones.•TNF deficiency decreases WNT signaling-related proteins.•TNF deficiency alters neuronal and microglial numbers.•Long-term use of non-selective TNF inhibitors impairs learning and memory.•Long-term use of the soluble TNF selective inhibitor XPro1595 does not affect neurogenesis, learning and memory. Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF−/−) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF−/− mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF−/− mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment

    Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities

    Get PDF
    AIMS/HYPOTHESIS: We determined the genetic contribution of 18 anthropometric and metabolic risk factors of type 2 diabetes using a young healthy twin population. METHODS: Traits were measured in 240 monozygotic (MZ) and 138 dizygotic (DZ) twin pairs aged 18 to 34 years. Twins were recruited from the Belgian population-based East Flanders Prospective Twin Survey, which is characterised by its accurate zygosity determination and extensive collection of perinatal and placental data, including information on chorionicity. Heritability was estimated using structural equation modelling implemented in the Mx software package. RESULTS: Intra-pair correlations of the anthropometric and metabolic characteristics did not differ between MZ monochorionic and MZ dichorionic pairs; consequently heritabilities were estimated using the classical twin approach. For body mass, BMI and fat mass, quantitative sex differences were observed; genetic variance explained 84, 85 and 81% of the total variation in men and 74, 75 and 70% in women, respectively. Heritability estimates of the waist-to-hip ratio, sum of four skinfold thicknesses and lean body mass were 70, 74 and 81%, respectively. The heritability estimates of fasting glucose, fasting insulin, homeostasis model assessment of insulin resistance and beta cell function, as well as insulin-like growth factor binding protein-1 levels were 67, 49, 48, 62 and 47%, in that order. Finally, for total cholesterol, LDL-cholesterol, HDL-cholesterol, total cholesterol:HDL-cholesterol ratio, triacylglycerol, NEFA and leptin levels, genetic factors explained 75, 78, 76, 79, 58, 37 and 53% of the total variation, respectively. CONCLUSIONS/INTERPRETATION: Genetic factors explain the greater part of the variation in traits related to obesity, glucose intolerance/insulin resistance and dyslipidaemia

    Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia

    Get PDF
    Over the last decades, the development of the Klang Valley (Malaysia), as an urban commercial and industrial area, has elevated the risk of atmospheric pollutions. There are several significant sources of air pollutants which vary depending on the background of the location they originate from. The aim of this study is to determine the trend and status of air quality and their correlation with the meteorological factors at different air quality monitoring stations in the Klang Valley. The data of five major air pollutants (PM10, CO, SO2, O3, NO2) were recorded at the Alam Sekitar Sdn Bhd (ASMA) monitoring stations in the Klang Valley, namely Petaling Jaya (S1), Shah Alam (S2) and Gombak (S3). The data from these three stations were compared with the data recorded at Jerantut, Pahang (B), a background station established by the Malaysian Department of Environment. Results show that the concentrations of CO, NO2 and SO2 are higher at Petaling Jaya (S1) which is due to influence of heavy traffic. The concentrations of PM10 and O3, however, are predominantly related to regional tropical factors, such as the influence of biomass burning and of ultra violet radiation from sunlight. They can, though, also be influenced by local sources. There are relatively stronger inter-pollutant correlations at the stations of Gombak and Shah Alam, and the results also suggest that heavy traffic flow induces high concentrations of PM10, CO, NO2 and SO2 at the three sampling stations. Additionally, meteorological factors, particularly the ambient temperature and wind speed, may influence the concentration of PM10 in the atmosphere

    Effects of two common polymorphisms in the 3' untranslated regions of estrogen receptor β on mRNA stability and translatability

    Get PDF
    Estrogen signaling is mediated by estrogen receptors (ERs), ERα and ERβ. Aberrant estrogen signaling is involved in breast cancer development. ERα is one of the key biomarkers for diagnosis and treatment of breast cancer. Unlike ERα, ERβ is still not introduced as a marker for diagnosis and established as a target of therapy. Numerous studies suggest antiproliferative effects of ERβ, however its role remains to be fully explored. Albeit important, ERα is not a perfect marker, and some aspects of ERα function are still unclear. This thesis aims to characterize distinct molecular facets of ER action relevant for breast cancer and provide valuable information for ER-based diagnosis and treatment design. In PAPER I, we analyzed the functionality of two common single nucleotide polymorphisms in the 3’ untranslated regions of ERβ, rs4986938 and rs928554, which have been extensively investigated for association with various diseases. A significant difference in allelic expression was observed for rs4986938 in breast tumor samples from heterozygous individuals. However, no difference in mRNA stability or translatability between the alleles was observed. In PAPER II, we provided a more comprehensive understanding of ERβ function independent of ERα. A global gene expression analysis in a HEK293/ERβ cell model identified a set of ERβ-regulated genes. Gene Ontology (GO) analysis showed that they are involved in cell-cell signaling, morphogenesis and cell proliferation. Moreover, ERβ expression resulted in a significant decrease in cell proliferation. In PAPER III, using the human breast cancer MCF-7/ERβ cell model, we demonstrated, for the first time, the binding of ERα/β heterodimers to various DNA-binding regions in intact chromatin. In PAPER IV, we investigated a potential cross-talk between estrogen signaling and DNA methylation by identifying their common target genes in MCF-7 cells. Gene expression profiling identified around 150 genes regulated by both 17β- estradiol (E2) and a hypomethylating agent 5-aza-2’-deoxycytidine. Based on GO analysis, CpG island prediction analysis and previously reported ER binding regions, we selected six genes for further analysis. We identified BTG3 and FHL2 as direct target genes of both pathways. However, our data did not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes. In PAPER V, we further explored the interactions between estrogen signaling and DNA methylation, with focus on DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). E2, via ERα, up-regulated DNMT1 and down-regulated DNMT3a and DNMT3b mRNA expression. Furthermore, DNMT3b interacted with ERα. siRNA-mediated DNMT3b depletion increased the expression of two genes, CDKN1A and FHL2. We proposed that the molecular mechanism underlying regulation of FHL2 and CDKN1A gene expression involves interplay of DNMT3b and ERα. In conclusion, the studies presented in this thesis contribute to the knowledge of ERβ function, and give additional insight into the cross-talk mechanisms underlying ERα signaling with ERβ and with DNA methylation pathways

    Hypertension Is Associated with Marked Alterations in Sphingolipid Biology: A Potential Role for Ceramide

    Get PDF
    Background Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function. Methods and Findings In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p Conclusions Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone

    Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): results from a UK multi-centre, randomised, double blind, placebo-controlled pilot trial.

    Get PDF
    BACKGROUND: There is increasing interest in the timely administration of concentrated sources of fibrinogen to patients with major traumatic bleeding. Following evaluation of early cryoprecipitate in the CRYOSTAT 1 trial, we explored the use of fibrinogen concentrate, which may have advantages of more rapid administration in acute haemorrhage. The aims of this pragmatic study were to assess the feasibility of fibrinogen concentrate administration within 45 minutes of hospital admission and to quantify efficacy in maintaining fibrinogen levels ≥ 2 g/L during active haemorrhage. METHODS: We conducted a blinded, randomised, placebo-controlled trial at five UK major trauma centres with adult trauma patients with active bleeding who required activation of the major haemorrhage protocol. Participants were randomised to standard major haemorrhage therapy plus 6 g of fibrinogen concentrate or placebo. RESULTS: Twenty-seven of 39 participants (69%; 95% CI, 52-83%) across both arms received the study intervention within 45 minutes of admission. There was some evidence of a difference in the proportion of participants with fibrinogen levels ≥ 2 g/L between arms (p = 0.10). Fibrinogen levels in the fibrinogen concentrate (FgC) arm rose by a mean of 0.9 g/L (SD, 0.5) compared with a reduction of 0.2 g/L (SD, 0.5) in the placebo arm and were significantly higher in the FgC arm (p < 0.0001) at 2 hours. Fibrinogen levels were not different at day 7. Transfusion use and thromboembolic events were similar between arms. All-cause mortality at 28 days was 35.5% (95% CI, 23.8-50.8%) overall, with no difference between arms. CONCLUSIONS: In this trial, early delivery of fibrinogen concentrate within 45 minutes of admission was not feasible. Although evidence points to a key role for fibrinogen in the treatment of major bleeding, researchers need to recognise the challenges of timely delivery in the emergency setting. Future studies must explore barriers to rapid fibrinogen therapy, focusing on methods to reduce time to randomisation, using 'off-the-shelf' fibrinogen therapies (such as extended shelf-life cryoprecipitate held in the emergency department or fibrinogen concentrates with very rapid reconstitution times) and limiting the need for coagulation test-based transfusion triggers. TRIAL REGISTRATION: ISRCTN67540073 . Registered on 5 August 2015

    Effects of Deoxycholylglycine, a Conjugated Secondary Bile Acid, on Myogenic Tone and Agonist-Induced Contraction in Rat Resistance Arteries

    Get PDF
    Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined.Fourth-order mesenteric arteries (170-250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1-100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K(+) channel blockade with glibenclamide (K(ATP)), 4-aminopyradine (K(V)), BaCl(2) (K(IR)) or tetraethylammonium (TEA, K(Ca)) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca(2+) fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca(2+) (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca(2+) responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction.In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca(2+) responses, independent of muscarinic receptor, NO or K(+) channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs

    Post-transcriptional control of tumor cell autonomous metastatic potential by the CCR4-NOT deadenylase CNOT7

    Get PDF
    Accumulating evidence supports the role of an aberrant transcriptome as a driver of metastatic potential. Deadenylation is a general regulatory node for post-transcriptional control by microRNAs and other determinants of RNA stability. Previously, we demonstrated that the CCR4-NOT scaffold component Cnot2 is an inherited metastasis susceptibility gene. In this study, using orthotopic metastasis assays and genetically engineered mouse models, we show that one of the enzymatic subunits of the CCR4-NOT complex, Cnot7, is also a metastasis modifying gene. We demonstrate that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity. Furthermore, metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1. CNOT7 ribonucleoprotein-immunoprecipitation (RIP) and integrated transcriptome wide analyses reveal that CNOT7-regulated transcripts are enriched for a tripartite 3’UTR motif bound by RNA-binding proteins known to complex with CNOT7, TOB1, and CNOT1. Collectively, our data support a model of CNOT7, TOB1, CNOT1, and RNA-binding proteins collectively exerting post-transcriptional control on a metastasis suppressive transcriptional program to drive tumor cell metastasis
    • …
    corecore