62,533 research outputs found
The structure and magnetism of graphone
Graphone is a half-hydrogenated graphene. The structure of graphone is
illustrated as trigonal adsorption of hydrogen atoms on graphene at first.
However, we found the trigonal adsorption is unstable. We present an
illustration in detail to explain how a trigonal adsorption geometry evolves
into a rectangular adsorption geometry. We check the change of magnetism during
the evolution of geometry by evaluating the spin polarization of the
intermediate geometries. We prove and clarify that the rectangular adsorption
of hydrogen atoms on graphene is the most stable geometry of graphone and
graphone is actually antiferromagnetic.Comment: 11 pages, 4 figure
An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit
In this paper we explore an identity in distribution of hitting times of a
finite variation process (Yor's process) and a diffusion process (geometric
Brownian motion with affine drift), which arise from various applications in
financial mathematics. As a result, we provide analytical solutions to the fair
charge of variable annuity guaranteed minimum withdrawal benefit (GMWB) from a
policyholder's point of view, which was only previously obtained in the
literature by numerical methods. We also use complex inversion methods to
derive analytical solutions to the fair charge of the GMWB from an insurer's
point of view, which is used in the market practice, however, based on Monte
Carlo simulations. Despite of their seemingly different formulations, we can
prove under certain assumptions the two pricing approaches are equivalent.Comment: 25 pages, 2 figure
Experimental and theoretical research on the electrical conductivity of a liquid desiccant for the liquid desiccant air-conditioning system: LiCl aqueous solution
At present, the energy consumption in buildings occupies a large proportion of total energy use, and air-conditionings cost a large proportion of energy in the buildings. The liquid desiccant air-conditioning system has a good energy saving potential and the electrodialysis (ED) regeneration is a reliable choice for the liquid desiccant regeneration. In order to establish the energy consumption model and the performance coefficient model of liquid desiccant air-conditioning system based on ED regeneration using LiCl, experimental and theoretical research on the electrical conductivity of LiCl aqueous solution with a lot of concentrations and temperatures was conducted in this paper. The results show that when polynomial degrees of the mass concentration and the temperature of the LiCl aqueous solution are both 3, the electrical conductivity model for the LiCl aqueous solution is most suitable as its simplicity and high accuracy. Moreover, when the concentration is 36% and the temperature is 22 °C, the liquid desiccant cooling system has the maximum COP of about 5. Finally, a case study of a small office room was conducted, and the result shows that the liquid desiccant cooling system based on electrodialysis regeneration has a good energy-saving potential
On the explicit finite element formulation of the dynamic contact problem of hyperelastic membranes
Contact-impact problems involving finite deformation axisymmetric membranes are solved by the finite element method with explicit time integration. The formulation of the membrane element and the contact constraint conditions are discussed. The hyperelastic, compressible Blatz and Ko material is used to model the material properties of the membrane. Two example problems are presented
Heuristic algorithms for the min-max edge 2-coloring problem
In multi-channel Wireless Mesh Networks (WMN), each node is able to use
multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004,
INFOCOM 2005) propose and study several such architectures in which a computer
can have multiple network interface cards. These architectures are modeled as a
graph problem named \emph{maximum edge -coloring} and studied in several
papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016).
Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the \emph{min-max edge -coloring}.
The above mentioned graph problems, namely the maximum edge -coloring and
the min-max edge -coloring are studied mainly from the theoretical
perspective. In this paper, we study the min-max edge 2-coloring problem from a
practical perspective. More precisely, we introduce, implement and test four
heuristic approximation algorithms for the min-max edge -coloring problem.
These algorithms are based on a \emph{Breadth First Search} (BFS)-based
heuristic and on \emph{local search} methods like basic \emph{hill climbing},
\emph{simulated annealing} and \emph{tabu search} techniques, respectively.
Although several algorithms for particular graph classes were proposed by
Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques,
hypergraphs), we design the first algorithms for general graphs.
We study and compare the running data for all algorithms on Unit Disk Graphs,
as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article
published in International Computing and Combinatorics Conference
(COCOON'18). The final authenticated version is available online at:
http://www.doi.org/10.1007/978-3-319-94776-1_5
Recommended from our members
A novel improved model for building energy consumption prediction based on model integration
Building energy consumption prediction plays an irreplaceable role in energy planning, management, and conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it is more important to evaluate the model from multiple perspectives, considering the characteristics of engineering applications. Based on the idea of model integration, this paper proposes a novel improved integration model (stacking model) that can be used to forecast building energy consumption. The stacking model combines advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the prediction performance of the stacking model in contrast with existing well-known prediction models including Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models, regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization (improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of 1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm libraries of empirical models
Recommended from our members
A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost
Due to reducing the reliance of buildings on fossil fuels, Passive House (PH) is receiving more and more attention. It is important that integrated optimization of passive performance by considering energy demand, cost and thermal comfort. This paper proposed a set three-stage multi-objective optimization method that combines redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-dominated sorting genetic algorithm (NSGA-II) for PH design. The method has strong engineering applicability, by reducing the model complexity and improving efficiency. Among then, the GBDT algorithm was first applied to the passive performance optimization of buildings, which is used to build meta-models of building performance. Compared with the commonly used meta-model, the proposed models demonstrate superior robustness with the standard deviation at 0.048. The optimization results show that the energy-saving rate is about 88.2% and the improvement of thermal comfort is about 37.8% as compared to the base-case building. The economic analysis, the payback period were used to integrate initial investment and operating costs, the minimum payback period and uncomfortable level of Pareto frontier solution are 0.48 years and 13.1%, respectively. This study provides the architects rich and valuable information about the effects of the parameters on the different building performance
- …