32,173 research outputs found
Robust H∞ control for discrete-time fuzzy systems with infinite-distributed delays
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H∞ control problem for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays and uncertain parameters. The time delay is assumed to be infinitely distributed in the discrete-time domain, and the uncertain parameters are norm-bounded. By using the linear matrix inequality (LMI) technique, sufficient conditions are derived for ensuring the exponential stability as well as the H infin performance for the closed-loop fuzzy control system. It is also shown that the controller gain can be characterized in terms of the solution to a set of LMIs, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures
Robust filtering with randomly varying sensor delay: The finite-horizon case
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method
Recommended from our members
Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines
This paper presents results of a preliminary experimental study of the Organic Rankine Cycle (ORC) using CO2/R134a mixture based on an expansion valve. The goal of the research was to examine the feasibility and effectiveness of using CO2 mixtures to improve system performance and expand the range of condensation temperature for ORC system. The mixture of CO2/R134a (0.6/0.4) on a mass basis was selected for comparison with pure CO2 in both the preheating ORC (P-ORC) and the preheating regenerative ORC (PR-ORC). Then, the feasibility and application potential of CO2/R134a (0.6/0.4) mixture for waste heat recovery from engines was tested under ambient cooling conditions. Preliminary experimental results using an expansion valve indicate that CO2/R134a (0.6/0.4) mixture exhibits better system performance than pure CO2. For PR-ORC using CO2/R134a (0.6/0.4) mixture, assuming a turbine isentropic efficiency of 0.7, the net power output estimation, thermal efficiency and exergy efficiency reached up to 5.30 kW, 10.14% and 24.34%, respectively. For the fitting value at an expansion inlet pressure of 10 MPa, the net power output estimation, thermal efficiency and exergy efficiency using CO2/R134a (0.6/0.4) mixture achieved increases of 23.3%, 16.4% and 23.7%, respectively, versus results using pure CO2 as the working fluid. Finally, experiments showed that the ORC system using CO2/R134a (0.6/0.4) mixture is capable of operating stably under ambient cooling conditions (25.2–31.5 °C), demonstrating that CO2/R134a mixture can expand the range of condensation temperature and alleviate the low-temperature condensation issue encountered with CO2. Under the ambient cooling source, it is expected that ORC using CO2/R134a (0.6/0.4) mixture will improve the thermal efficiency of a diesel engine by 1.9%
Hydrostatic pressure effects on the static magnetism in Eu(FeCo)As
The effects of hydrostatic pressure on the static magnetism in
Eu(FeCo)As are investigated by complementary
electrical resistivity, ac magnetic susceptibility and single-crystal neutron
diffraction measurements. A specific pressure-temperature phase diagram of
Eu(FeCo)As is established. The structural phase
transition, as well as the spin-density-wave order of Fe sublattice, is
suppressed gradually with increasing pressure and disappears completely above
2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the
whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic
variation with pressure. With the increase of the hydrostatic pressure, the
magnetic state of Eu evolves from the canted antiferromagnetic structure in the
ground state, via a pure ferromagnetic structure under the intermediate
pressure, finally to a possible "novel" antiferromagnetic structure under the
high pressure. The strong ferromagnetism of Eu coexists with the
pressure-induced superconductivity around 2 GPa. The change of the magnetic
state of Eu in Eu(FeCo)As upon the application
of hydrostatic pressure probably arises from the modification of the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu moments
tuned by external pressure.Comment: 9 pages, 6 figure
Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage
A simple scheme is presented to generate n-qubit W state with
rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED
through adiabatic passage. Because of the achievable strong coupling for
rf-SQUID qubits embedded in cavity QED, we can get the desired state with high
success probability. Furthermore, the scheme is insensitive to position
inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using
present experimental techniques, we can achieve our scheme with very high
success probability, and the fidelity could be eventually unity with the help
of dissipation.Comment: to appear in Phys. Rev.
Global behavior of cosmological dynamics with interacting Veneziano ghost
In this paper, we shall study the dynamical behavior of the universe
accelerated by the so called Veneziano ghost dark energy component locally and
globally by using the linearization and nullcline method developed in this
paper. The energy density is generalized to be proportional to the Hawking
temperature defined on the trapping horizon instead of Hubble horizon of the
Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the
fate of the universe and present the bifurcation phenomenon of the dynamical
system of the universe. It seems that the universe could be dominated by dark
energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE
- …