27,565 research outputs found
Measures to enforce mandatory civil building energy efficiency codes in China
Mandatory civil building energy efficiency codes strictly govern the energy consumption of new buildings in China. As the promotion of building energy efficiency in China has increased in recent years, compliance with mandatory civil building energy efficiency codes has also improved, increasing from less than 10% in 2000 to nearly 100% in 2012, a remarkable achievement. However, because the promotion of energy efficiency strategies in China has followed a unique pattern, some researchers doubt these statistics. In response to these doubts, this paper summarises and analyses the framework of measures implemented by the Chinese government to enforce mandatory building energy efficiency codes. First, the development and implementation of China's mandatory civil building energy efficiency code system is summarised. Second, the building supervision and inspection systems used to assess energy efficiency are introduced and analysed in detail in order to provide a framework for the development of energy policies in other countries. Third, the assessment and reporting processes used to determine compliance rates are reviewed. Finally, the improvement of compliance rates and its impact on building energy savings in China are discussed. Along with the increase in compliance rates in the construction stage from 71% in 2007 to 100% in 2012, the energy savings of new buildings per increased floor area per year increased from 20.4 kWh/m2 to 28.4 kWh/m2. The supervision and inspection systems reported in this paper are the keys to enforcing building energy efficiency codes
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
Excitation of nonlinear ion acoustic waves in CH plasmas
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field
is demonstrated by Vlasov simulation. The frequency calculated by the
dispersion relation with no damping is verified much closer to the resonance
frequency of the small-amplitude nonlinear IAW than that calculated by the
linear dispersion relation. When the wave number increases,
the linear Landau damping of the fast mode (its phase velocity is greater than
any ion's thermal velocity) increases obviously in the region of in which the fast mode is weakly damped mode. As a result, the deviation
between the frequency calculated by the linear dispersion relation and that by
the dispersion relation with no damping becomes larger with
increasing. When is not large, such as , the nonlinear IAW can be excited by the driver with the linear frequency
of the modes. However, when is large, such as
, the linear frequency can not be applied to exciting the
nonlinear IAW, while the frequency calculated by the dispersion relation with
no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1
- …