1,017 research outputs found

    Effects of cyclooxygenase-1 and -2 gene disruption on Helicobacter pylori-induced gastric inflammation

    Get PDF
    Background. Cyclooxygenases (COXs) play important roles in inflammation and carcinogenesis. The present study aimed to determine the effects of COX-1 and COX-2 gene disruption on Helicobacter pylori-induced gastric inflammation. Methods. Wild-type (WT), COX-1 and COX-2 heterozygous (COX-1 +/- and COX-2 +/-), and homozygous COX-deficient (COX-1 -/- and COX-2 -/-) mice were inoculated with H. pylori strain TN2 and killed after 24 weeks of infection. Uninfected WT and COX-deficient mice were used as controls. Levels of gastric mucosal inflammation, epithelial cell proliferation and apoptosis, and cytokine expression were determined. Results. COX deficiency facilitated H. pylori-induced gastritis. In the presence of H. pylori infection, apoptosis was increased in both WT and COX-deficient mice, whereas cell proliferation was increased in WT and COX-1-deficient, but not in COX-2-deficient, mice. Tumor necrosis factor (TNF)-α and interleukin-10 mRNA expression was elevated in H. pylori-infected mice, but only TNF-α mRNA expression was further increased by COX deficiency. Prostaglandin E 2 levels were increased in infected WT and COX-2-deficient mice but were at very low levels in infected COX-1-deficient mice. Leukotriene (LT) B 4 and LTC 4 levels were increased to a similar extent in infected WT and COX-deficient mice. Conclusions. COX deficiency enhances H. pylori-induced gastritis, probably via TNF-α expression. COX-2, but not COX-1, deficiency suppresses H. pylori-induced cell proliferation. © 2006 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    ZnO-based film bulk acoustic resonator for high sensitivity biosensor applications

    Get PDF
    Author name used in this publication: G. K. H. Pang2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The POT1-TPP1 telomere complex is a telomerase processivity factor

    Full text link
    Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 ( protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the beta-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing beta-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1 - TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62923/1/nature05454.pd

    Lymph node hemophagocytosis in rickettsial diseases: a pathogenetic role for CD8 T lymphocytes in human monocytic ehrlichiosis (HME)?

    Get PDF
    BACKGROUND: Human monocytic ehrlichiosis (HME) and Rocky Mountain spotted fever (RMSF) are caused by Ehrlichia chaffeensis and Rickettsia rickettsii, respectively. The pathogenesis of RMSF relates to rickettsia-mediated vascular injury, but it is unclear in HME. METHODS: To study histopathologic responses in the lymphatic system for correlates of immune injury, lymph nodes from patients with HME (n = 6) and RMSF (n = 5) were examined. H&E-stained lymph node tissues were examined for five histopathologic features, including hemophagocytosis, cellularity, necrosis, and vascular congestion and edema. The relative proportions of CD68 macrophages, CD8 and CD4 T lymphocytes, and CD20 B lymphocytes were evaluated by immunohistochemical staining. RESULTS: Hemophagocytosis was similar in HME and RMSF, and was greater than in control cases (p = .015). Cellularity in HME was not different from controls, whereas RMSF lymph nodes were markedly less cellular (p < 0.002). E. chaffeensis-infected mononuclear phagocytes were infrequent compared to R. rickettsii-infected endothelial cells. More CD8 cells in lymph nodes were observed with HME (p < .001), but no quantitative differences in CD4 lymphocytes, macrophages, or B lymphocytes were identified. CONCLUSION: Hemophagocytosis, CD8 T cell expansion, and the paucity of infected cells in HME, suggest that E. chaffeensis infection leads to macrophage activation and immune-mediated injury

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Genetic Labeling of Neuronal Subsets through Enhancer Trapping in Mice

    Get PDF
    The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets

    A novel chemiluminescence assay of organophosphorous pesticide quinalphos residue in vegetable with luminol detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organophosphorous pesticides are the most popular pesticides used in agriculture. As acetylcholinesterase inhibitors, organophosphorous pesticides are toxic organic chemicals. The control and detection of organophosphorous pesticide residue in food, water, and environment therefore plays a very important role in maintaining physical health. A sensitive, rapid, simple chemiluminescence(CL) method has been developed for the determination of quinalphos based on the reaction of quinalphos with luminol-H<sub>2</sub>O<sub>2 </sub>in an alkaline medium. The method has been applied to detection of quinalphos in vegetable samples with satisfactory results.</p> <p>Results</p> <p>The CL method for the determination of organophosphorous pesticide quinalphos is based on the phenomenon that quinalphos can apparently enhance the CL intensity of the luminol-H<sub>2</sub>O<sub>2 </sub>system. The optimal conditions were: luminol concentration 5.0 × 10<sup>-4 </sup>mol/L, H<sub>2</sub>O<sub>2 </sub>concentration 0.05 mol/L.pH value 13. In order to restrain the interference from metal ions, 1.0 × 10<sup>-3 </sup>mol/L of EDTA was added to the luminol solution. The possible mechanism was proposed.</p> <p>Conclusion</p> <p>Under the optimum reaction conditions, CL was linear with the concentration of quinalphos in the range of 0.02 μg/mL -1.0 μg/mL and the detection limit was 0.0055 μg/mL (3σ). This method has been successfully applied to the detection of quinalphos in vegetable samples. According to the experimental data, the average recoveries for quinalphos in cherry tomato and green pepper 97.20% and 90.13%. Meanwhile, the possible mechanism was proposed.</p

    A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R<sup>®</sup>) could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection.</p> <p>Methods</p> <p>BALB/c mice were treated by gavage once daily with Gastrogard-R<sup>® </sup>from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV) at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM) virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH) responses were also measured.</p> <p>Results</p> <p>Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R<sup>® </sup>were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R<sup>®</sup>. Mice receiving Gastrogard-R<sup>® </sup>however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected.</p> <p>Conclusions</p> <p>Preventing RRV-induced diarrhea by Gastrogard-R<sup>® </sup>early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.</p
    corecore