31,039 research outputs found

    Contextualising demography: the significance of local clusters of fertility in Scotland

    Get PDF
    This study links empirical analysis of geographical variations in fertility to ideas of contextualising demography. We examine whether there are statistically significant clusters of fertility in Scotland between 1981 and 2001, controlling for more general factors expected to influence fertility. Our hypothesis, that fertility patterns at a local scale cannot be explained entirely by ecological socio-economic variables, is supported. In fact, there are ‘unexplained’ local clusters of high and low fertility, which would be masked in analyses at a different scale. We discuss the demographic significance of local fertility clusters as contexts for fertility behaviour, including the role of the housing market and social interaction processes, and the residential sorting of those displaying or anticipating different fertility behaviour. We conclude that greater understanding of local geographical contexts is needed if we are to develop mid-level demographic theories and shift the focus of fertility research from events to processes.Scotland, fertility, geography

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    Formation of Hydrogenated Graphene Nanoripples by Strain Engineering and Directed Surface Self-assembly

    Full text link
    We propose a new class of semiconducting graphene-based nanostructures: hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics analysis and first principles calculations. They are formed via a two-step combinatorial approach: first by strain engineered pattern formation of graphene nanoripples, followed by a curvature-directed self-assembly of H adsorption. It offers a high level of control of the structure and morphology of the HGNRs, and hence their band gaps which share common features with graphene nanoribbons. A cycle of H adsorption/desorption at/from the same surface locations completes a reversible metal-semiconductor-metal transition with the same band gap.Comment: 11 pages, 5 figure

    Integral partitioning approach to stability analysis and stabilization of distributed time delay systems

    Get PDF
    In this paper, the problems of delay-dependent stability analysis and stabilization are investigated for linear continuous-time systems with distributed delay. By introducing an integral partitioning technique, a new form of Lyapunov-Krasovskii functional (LKF) is constructed and improved distributed delay dependent stability conditions are established in terms of linear matrix inequalities (LMIs). Based on the criteria, a design algorithm for a state feedback controller is proposed. The results developed in this paper are less conservative than existing ones in the literature, which is illustrated by several examples. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5094–509

    Reduced-order dissipative filtering for discrete-time singular systems

    Get PDF
    This paper is concerned with the reduced-order dissipative filtering problem of discrete-time singular systems. By considering an equivalent representation of the solution set, a necessary and sufficient dissipativity condition of singular systems is proposed in terms of strict LMI. By using the system augmentation approach, a reduced-order filter is designed such that the filtering error system is admissible and strictly (Q, S, R)-dissipative. A numerical example is presented to demonstrate the usefulness of the derived theoretical results. © 2013 IEEE.published_or_final_versio

    Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity

    Full text link
    We present a quantum electrodynamical model involving nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. Two schemes are considered to create W state and Bell state, respectively. One of the schemes makes use of the Raman transition with the cavity field virtually excited; The other enables the Bell state preparation and quantum information transfer by virtue of dark state evolution and adiabatic passage, which is tolerant to ambient noise and experimental parameter fluctuations. We justify our schemes by considering the experimental feasibility and challenge using currently available technology.Comment: 8 pages and 5 figure
    corecore