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Reduced-order Dissipative Filtering for
Discrete-time Singular Systems

Zhiguang Feng James Lam

Abstract—This paper is concerned with the reduced-order
dissipative filtering problem of discrete-time singular systems.
By considering an equivalent representation of the solution set,
a necessary and sufficient dissipativity condition of singular
systems is proposed in terms of strict LMI. By using the system
augmentation approach, a reduced-order filter is designed such
that the filtering error system is admissible and strictly (Q,S,R)-
dissipative. A numerical example is presented to demonstrate the
usefulness of the derived theoretical results.

Index Terms—Augmentation Approach; Dissipative Filter;
Reduced-order Filtering; Singular Systems.

I. INTRODUCTION

Singular systems, also called descriptor systems,
differential-algebraic systems, can often better describe the
behavior of physical systems and have extensive application
in many practical areas, such as chemical processes [8],
economic systems [11], and circuit systems [15]. Due to the
theoretical importance and practical application of singular
systems, many researchers have been devoting their attention
on the singular system and a lot of results have been obtained,
for examples stability and stabilization [25]; H∞ performance
analysis and control [1], [10]; passivity and passification [28],
[29]; dissipativity analysis and dissipative control [5], [22];
model reduction [20], [24].

Dissipativity property provides a uniform framework con-
sidering the gain and phase information simultaneously, which
have played an important role in control theory and applica-
tions [21]. Many basic tools such as the passivity theorem,
bounded real lemma, Kalman-Yakubovic-Popov (KYP) lemma
and circle criterion are generalized in the dissipativity theory
which has attracted considerable attention [2], [4], [19], [22].
For continuous-time singular systems, without constraining the
choice of the system realization, a necessary and sufficient dis-
sipativity condition is established and a state feedback control
problem is solved in [13]. The corresponding output feedback
controller design method is provided in [14]. However, the
results in [13] and [14] are described in non-strict LMIs which
lead to some computation difficulties. The new KYP lemma
for the dissipativity of singular system is characterized in terms
of strict LMI in [3]. For discrete-time singular systems, only
one necessary and sufficient dissipativity condition is proposed
in [2] which involves the condition in terms of non-strict
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LMIs. This motivates us to establish a necessary and sufficient
condition with a strict LMI.

On the other hand, the filtering problem for dynamic sys-
tems has received great attention due to its practical signif-
icance [17], [18]. Some results about filtering problem for
standard state space system have been extended to singu-
lar systems. The full-order and reduced-order H∞ filtering
problems of singular systems are investigated in [23] and
[27], respectively. By using a similar method, the reduced-
order energy-to-peak filtering problem for continuous-time and
discrete-time singular systems is tackled in [30] and [31],
respectively. It should be pointed out that the conditions
obtained in [23], [27], [30] and [31] involve a rank con-
straint and non-strict inequality constraints which give rise to
computation complexity. A reduced-order l2-l∞ filter design
method for discrete-time singular systems is given in terms
of strict LMI in [12]. For time-delay singular systems, full-
order and reduced-order H∞ filters are designed in [6] and
[7], respectively. To the best knowledge of the authors, no
reduced-order dissipative filter design method for discrete-time
singular systems has been reported.

In this paper, by giving an equivalent representation of the
solution set, a necessary and sufficient dissipativity condition
is proposed in terms of strict LMI. Then a reduced-order filter
design method is given based on the augmentation system
approach such that the filtering error system is admissible and
strictly (Q,S,R)-dissipative. A numerical example is given to
illustrate the effectiveness of the obtained results.

The rest of this paper is briefly outlined as follows. In
Section II, the reduced-order dissipative filtering problem is
formulated. A necessary and sufficient dissipativity condition
of singular system is given and the reduced-order filter is
designed in Section III. Illustrative examples are provided
in Section IV to show the effectiveness of our results. We
conclude the paper in Section V.

Notation: The notation used throughout the paper is stan-
dard. Rn denotes the n-dimensional Euclidean space and
P > 0 (≥ 0) means that P is real symmetric and positive
definite (semi-definite); I and 0 refer to the identity matrix
and zero matrix with compatible dimensions; ⋆ stands for the
symmetric terms in a symmetric matrix and sym(A) is defined
as A+AT ; l2 refers to the space of square summable infinite
vector sequences. • represents matrices that are not relevant
with our discussion; ∥ · ∥ refers to the Euclidean vector norm;
for two vectors u, v, ⟨u, v⟩τ is defined as

∑τ
k=0 u

T (k)v(k).
Matrices are assumed to be compatible for algebraic operations
if their dimensions are not explicitly stated.
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II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a discrete-time singular systemEx(k + 1) = Ax(k) +Bww(k), x0 = x(0)
z(k) = Cx(k) +Dww(k)
y(k) = Cyx(k) +Dyw(k)

(1)

where x(k) ∈ Rn is the state vector; w(k) ∈ Rl represents a
disturbance which belongs to l2; z(k) ∈ Rq is the controlled
output; y(k) ∈ Rg is the measurement output; matrices E, A,
Bw, C, Dw, Cy and Dy are constant matrices with appropriate
dimensions and rank(E) = r ≤ n. In order to estimate
controlled output z(k), the following reduced-order filtering
is constructed:{

x̂(k + 1) = Af x̂(k) +Bfy(k), x̂(0) = 0
ẑ(k) = Cf x̂(k) +Dfy(k)

(2)

where x̂(k) ∈ Rm (0 < m ≤ n) is the state vector of the
filter; ẑ(k) ∈ Rq is the estimation of z(k); matrices Af , Bf ,
Cf and Df are filter parameters to be determined.

Denote x̆(k) =
[
xT (k) x̂T (k)

]T
and the estimation error

z̆(k) = z(k) − ẑ(k), then the filtering error singular system
derived from the singular system in (1) and the filter in (2) is{

Ĕx̌(k + 1) = Ăx̆(k) + B̆ww(k)

z̆(k) = C̆x̆(k) + D̆ww(k)
(3)

where

Ĕ =

[
E 0
0 I

]
, Ă =

[
A 0

BfCy Af

]
, B̆w =

[
Bw

BfDy

]
C̆ =

[
C −DfCy −Cf

]
, D̆w = Dw −DfDy

Our aim is to design a filter in (2) such that the filtering error
system in (3) is admissible and strictly (Q,S,R)-dissipative.

By using simple algebraic manipulations, the following
equations hold:

Ă = Ã+HKC̃y, B̆w = B̃ +HKD̃y

C̆ = C̃ + JKC̃y, D̆w = Dw + JKD̃y (4)

where

Ã =

[
A 0
0 0

]
, B̃ =

[
Bw

0

]
, C̃ =

[
C 0

]
C̃y =

[
0 I
Cy 0

]
, D̃y =

[
0
Dy

]
H =

[
0 0
I 0

]
, J =

[
0 −I

]
, K =

[
Af Bf

Cf Df

]
Then the system in (3) can be rewritten as:

Ĕx̌(k + 1) = Ãx̆(k) +Hŭ(k) + B̃w(k)

z̆(k) = C̃x̆(k) + Jŭ(k) +Dww(k)

y̆(k) = C̃yx̆(k) + D̃yw(k)

(5)

with ŭ(k) = Ky̆(k). Therefore, the filter design problem of
system (1) is equivalent to design a matrix K for the system
in (5) such that the filtering error system in (3) is admissible
and strictly (Q,S,R)-dissipative.

Before moving on, we give some definitions and lemmas
which will be used in deriving the main results.

Definition 1. [26]
1) The singular system in (1) is said to be regular if

det(sE −A) is not identically zero.
2) The singular system in (1) is said to be causal if

deg {det(sE −A)} = rank (E).
3) The singular system in (1) is said to be stable if the

moduli of the roots of det(zE−A) = 0 are less than 1.
4) The singular system in (1) is said to be admissible if it

is regular, causal, and stable.

Definition 2. [2] The system in (1) is said to be strictly
(Q,S,R)-dissipative if there exists a scalar α > 0 and under
zeros initial state x0 = 0, the following inequality holds:

G(z, w, τ) = ⟨z,Qz⟩τ + 2⟨z, Sw⟩τ + ⟨w,Rw⟩τ
≥ α⟨w,w⟩τ ,∀τ ≥ 0 (6)

As in [2], Q ≤ 0 is assumed. Consequently, there exists a
matrix Q

1
2
− ≥ 0 satisfying −Q = (Q

1
2
−)

2.

Lemma 1. [2] Let the matrices Q, S and R be given with Q
and R symmetric. Then the system in (1) is admissible (when
w(k) = 0) and strictly (Q,S,R)-dissipative, if and only if
there exists a symmetric and invertible matrix X such that

ETXE ≥ 0 (7)ATXA− ETXE ATXBw − CTS CTQ
1
2
−

⋆ Z DT
wQ

1
2
−

⋆ ⋆ −I

 < 0 (8)

where Z = BT
wXBw −DT

wS − STDw −R.

Lemma 2. The following two sets are equivalent:

X1 =
{
X ∈ Rn×n : ETXE ≥ 0, rank(ETXE) = r,

X = XT
}

X2 =
{
X = P − ET

0 UE0 : P > 0, E0E = 0, E0E
T
0 > 0,

E0 ∈ R(n−r)×n, U = UT
}

Proof. Sufficiency: When X ∈ X2, we have ETXE =
ETPE ≥ 0 and rank(ETPE) = r which implies X ∈ X1.

Necessity: Without loss of generality, we set E =

[
I 0
0 0

]
and X =

[
X1 X2

XT
2 X3

]
, where X1 = XT

1 ∈ Rr×r and

X3 = XT
3 ∈ R(n−r)×(n−r). Then we have E0 =

[
0 I

]
and it yields from ETXE ≥ 0 that X1 ≥ 0. Combining
with rank(ETXE) = rank(X1) = r, we have X1 > 0.

By constructing P =

[
X1 X2

XT
2 XT

2 X
−1
1 X2 + ϵI

]
> 0 with

ϵ > 0 and U = UT = XT
2 X

−1
1 X2 + ϵI − X3, we have

X = P − ET
0 UE0. �

III. REDUCED-ORDER DISSIPATIVE FILTERING

A. Dissipativity analysis

In this subsection, a new necessary and sufficient dissipaitiv-
ity condition of discrete-time singular systems is given in terms
of strict LMI based on Lemma 2.
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Theorem 1. Let the matrices Q, S and R be given with Q
and R symmetric. The following statements are equivalent:

(i) System (1) is admissible and strictly (Q,S,R)-
dissipative.

(ii) There exist matrices P > 0, and U = UT such that the
following LMI holds:−ETPE +ATV A ATV Bw − CTS CTQ

1
2
−

⋆ Γ DT
wQ

1
2
−

⋆ ⋆ −I

 < 0

(9)
where V = P − ET

0 UE0, and Γ = BT
wV Bw −DT

wS −
STDw −R.

(iii) There exist matrices P > 0, U = UT , F and G such
that the following LMI holds:[

−ETPE + sym(LTS + FA) −F +ATGT

⋆ V − GT − G

]
< 0

(10)
where

E =

[
E 0
0 I

]
, P =

[
P 0
0 R

]
, L =

[
C Dw

]
A =

[
A Bw

Q
1
2
−C Q

1
2
−Dw

]
, V =

[
V 0
0 I

]
, S =

[
0 −S

]
Proof. (i) ⇐⇒ (ii): The equivalence between item (i) and item
(ii) are obtained by using Lemma 1 and Lemma 2.
(iii) ⇒ (ii): The following LMI can be derived by pre-
multiplying and post-multiplying (10) with

[
I AT

]
and[

I AT
]T

:

V̄ =

[
−ETPE +ATV A ATV Bw − CTS

⋆ BT
wV Bw −DT

wS − STDw −R

]
−
[
CTQC CTQDw

⋆ DT
wQDw

]
< 0

which is equivalent to (9) by utilizing Schur complement
equivalence.
(ii) ⇒ (iii): By employing Schur complement equivalence,
condition (9) is equivalent to[

Γ11 Γ12

⋆ Γ22

]
= −ETPE + sym(LTS) +ATVA < 0

where

Γ11 = −ETPE +ATV A− CTQC

Γ12 = ATV Bw − CTS − CTQDw

Γ22 = BT
wV Bw −DT

wS − STDw −R−DT
wQDw

and P , A, V are defined in (10). On the other hand, there
always exist a matrix G such that V − GT − G < 0 and[

−ETPE + sym(LTS) +ATVA 0
0 V − GT − G

]
< 0 (11)

By pre-multiplying and post-multiplying (11) by
[
I −AT

0 I

]

and
[
I −AT

0 I

]T
, it yields that[
Γ2 AT (−V + G + GT )
⋆ V − G − GT

]
< 0 (12)

with Γ2 = −ETPE + sym(LTS) + AT sym(V − G)A. By
setting F = AT (V − G), we get inequality (10). �
Remark 1. The advantage of Item 3 of Theorem 1 lies in
separating the Lyapunov matrix P and the system matrices A
and C which is very useful for the controller design problem
and utilized widely [16]. However, if we use Item 3 of Theorem
1 to design the matrix K with input matrices B and D, the
terms F1Q

1
2
−(C + DKCy) and F1(A + BKCy) will appear

with F =

[
F1 F2

F3 F4

]
, which makes the condition in (10) difficult

to solve. Therefore, the separation of the controller K and
system matrices D and B will be helpful for solving the
filtering design problem.

B. Filter design

In this section, we will firstly give a necessary and sufficient
condition of designing the matrix K for system (5). Based on
this result, a tractable filtering design method is proposed.

Define x̄(k) =
[
x̆T (k) ŭT (k)

]T
as a new state variable and

the system in (5) is equivalent to the following augmentation
one: {

Ēx̄(k + 1) = Āx̄(k) + B̄ww(k)
z̆(k) = C̄x̄(k) + D̄ww(k)

(13)

where

Ē =

[
Ĕ 0
0 0

]
, Ā =

[
Ã H

KC̃y −I

]
B̄w =

[
B̃

KD̃y

]
, C̄ =

[
C̃ J

]
, D̄w = Dw

Before giving the main result, we first prove the equivalence
of admissibility and dissipativity between the systems in (3)
and (13). The following two equations are true:

zĒ − Ā =

[
zE − Ã −H

−KC̃y I

]
=

[
I −H
0 I

] [
zĔ − Ã−HKC̃y 0

0 I

] [
I 0

−KC̃y I

]
and

C̄(zĒ − Ā)−1B̄w +Dw

= Dw +
[
C̃ J

] [ I 0
KCy I

] [
(zĔ − Ã−HKC̃y)

−1 0
0 I

]
×
[
I H
0 I

] [
B̃w

KD̃y

]
= Dw + JKD̃y + (C̃ + JKC̃y)(zĔ − Ã−HKC̃y)

−1

×(B̃w +HKD̃y)

= C̆(zĔ − Ă)−1B̆w + D̆w

which derive that the determinants of zĒ − Ā and zĔ − Ă
are the same, and the transfer functions of the systems in (3)
and (13) are equal, respectively. By using the Definitions 1
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and 2, the admissibility and dissipativity of system in (3)
are equivalent to these in (13). By using the equivalence
between items (i) and (iii) of Theorem 1, the following
theorem proposes the dissipativity condition for system (13)
by utilizing system augmentation.

Theorem 2. The system in (13) is admissible and strictly
(Q,S,R) dissipative if and only if there exist matrices P > 0,
U = UT , F and G such that the following LMI holds:[

−ĒTPĒ + sym(L̄TS + FĀ) −F + ĀTGT

⋆ V̄ − GT − G

]
< 0 (14)

where

Ē =

[
Ē 0
0 I

]
, P =

[
P 0
0 R

]
, L̄ =

[
C̄ Dw

]
, S =

[
0 −S

]
Ā =

[
Ā B̄w

Q
1
2
−C̄ Q

1
2
−Dw

]
, V̄ =

[
V̄ 0
0 I

]
, V̄ = P − ĒT

0 UĒ0

Remark 2. It can be seen that the inequality in (14) is in
terms of bilinear matrix inequality (BMI) which can be solved
by utilizing the existing numerical method [9]. Moreover, the
H∞ filtering problem and the passivity filtering problem also
can be addressed by setting −Q = I , S = 0, R = γ2 and
−Q = 0, S = I , R = 0 in (14), respectively.

Based on Theorem 2, the result of reduced-order filtering
design for system (1) in terms of a tractable LMI condition is
presented in the following theorem.

Theorem 3. There exists a filter in (2) such that the filtering
error system in (3) is admissible and strictly (Q,S,R)-

dissipative if there exist matrices P =

[
P11 P12

⋆ P22

]
> 0,

U = UT , F11, F12, F13, F21, F22, F3, G11, G13, G21, G22

and G3 such that the following LMI holds:

Θ =



Θ11 Θ12 Θ13 Θ14 Θ15 −F21 + C̃TQ
1
2
−G

T
3

⋆ Θ22 Θ23 Θ24 Θ25 −F22 + JTQ
1
2
−G

T
3

⋆ ⋆ Θ33 Θ34 Θ35 −F3 +DT
wQ

1
2
−G

T
3

⋆ ⋆ ⋆ Θ44 Θ45 −G21

⋆ ⋆ ⋆ ⋆ Θ55 −G22

⋆ ⋆ ⋆ ⋆ ⋆ I −G3 −GT
3


< 0

(15)
where

Θ11 = −ĔTP11Ĕ + sym(F11Ã+ LMC̃y + F21Q
1
2
−C̃)

Θ12 = F11H − LF12 + F21Q
1
2
−J + ÃTFT

13 + C̃T
y M

T

+C̃TQ
1
2
−F

T
22

Θ13 = −C̃TS + F11B̃ + LMD̃y + F21Q
1
2
−Dw

+C̃TQ
1
2
−F

T
3

Θ14 = −F11 + ÃTGT
11 + C̃T

y M
TLT + C̃TQ

1
2
−G

T
21

Θ15 = −LF12 + ÃTGT
13 + C̃T

y M
T + C̃TQ

1
2
−G

T
22

Θ22 = sym(F13H − F12 + F22Q
1
2
−J)

Θ23 = −JTS + F13B̃ +MD̃y + F22Q
1
2
−Dw

+D̃TQ
1
2
−F

T
3

Θ24 = −F13 +HTGT
11 − FT

12L
T + JTQ

1
2
−G

T
21

Θ25 = −F12 +HTGT
13 − FT

12 + JTQ
1
2
−G

T
22

Θ33 = −R+ sym(F3Q
1
2
−Dw −DT

wS)

Θ34 = B̃TGT
11 + D̃T

y M
TLT +DT

wQ
1
2
−G

T
21

Θ35 = B̃TGT
13 + D̃T

y M
T +DT

wQ
1
2
−G

T
22

Θ44 = P11 − ĒT
01UĒ01 −G11 −GT

11

Θ45 = P12 − ĒT
01UĒ02 − LF12 −GT

13

Θ55 = P22 − ĒT
02UĒ02 − F12 − FT

12

and Ē0 =
[
Ē01 Ē02

]
with Ē0Ē = 0, Ē0Ē

T
0 > 0, Ē0 ∈

R(n+m+q−r)×(n+2m+q), Ē01 ∈ R(n+m+q−r)×(n+m), Ē02 ∈
R(n+m+q−r)×(m+q), LT =

[
Im+q 0(m+q)×(n−q)

]
. Then a

desired filter can be obtained by K = F−1
12 M =

[
Af Bf

Cf Df

]
.

Proof. Set

F1 =

[
F11 LF12

F13 F12

]
, F2 =

[
F21

F22

]
G1 =

[
G11 LF12

G13 F12

]
, G2 =

[
G21

G22

]
and let the matrices F and G be the following forms:

F =

[
F1 F2

0 F3

]
, G =

[
G1 G2

0 G3

]

Then noting that K = F−1
12 M , we can obtain the inequality in

(14) from the inequality in (15) by straightforward calculating.
Therefore, the admissibility and dissipativity of system (13)
which is equivalent to those of system (3) are proved. �

Remark 3. The non-singularity of the matrix F12 in Theorem
3 is satisfied without loss of generality. If it is not the case,
then we can choose a sufficient small scalar θ such that F̄12 =
F12 + θI satisfying the inequality in (15). Then the matrix K
can be replaced with F̄−1

12 M .

Remark 4. The reduced-order filtering problem is also investi-
gated in [7] and [27], respectively. However, in order to obtain
the desired filter parameters, the complex matrix structure is
needed in them and the rank of the different of two decision
variables should be less than the order of the filter in [27].
For our method, the filter parameters can be obtained directly
by solving the LMI in (15) which avoids considering the rank
constraint in [27] or constructing some complex matrices in
[7] .

IV. ILLUSTRATIVE EXAMPLE

In this section, an example is provided to illustrate the
effectiveness of the proposed approach. Theorem 1 which
provides a necessary and sufficient dissipativity condition will
be used to check the applicability of the filter design methods.

In this example, a first-order filter in the form of (2) will
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be designed for the following discrete-time singular systems:

1 1 0
1 −1 1
2 0 1

x(k + 1) =

−1 0.5 1
−1 −0.3 1
0.5 0 1

x(k) +

−0.1
0
0.1

w(k)

z(k) =

−3.2 0 3.2
3.2 0 1.6
0 0 3.2

x(k) +

−0.1
0.5
0.1

w(k)

y(k) =

1 1 0
1 1 0
0 0 1

x(k) +

0.10
0.1

w(k)

(16)
From the value of Ē, we get

Ē01 =


1 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Ē02 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


By setting

Q =

−0.6200 0.8000 −0.1600
0.8000 −1.2500 0.0500
−0.1600 0.0500 −1.0100


S =

−0.1
0.5
0.2

 , R = 1.5

and solving the LMI in (15), the matrix K is obtained as
follows:

K =


0.1256 1.3812 −1.7594 −0.7707
−0.0637 0.0899 −0.5044 −0.8806
0.1001 1.8047 −1.3853 −2.4015
−1.0660 −0.8425 1.1057 0.7424


Then we get that the first-order filter is

x̂(k + 1) = 0.1256x̂(k) +
[
1.3812 −1.7594 −0.7707

]
y(k)

x̂(0) = 0

ẑ(k) =

−0.0637
0.1001
−1.0660

 x̂(k)

+

 0.0899 −0.5044 −0.8806
1.8047 −1.3853 −2.4015
−0.8425 1.1057 0.7424

 y(k)

and the parameters of the filtering error system in (3) are given
as follows:

Ĕ =


1 1 0 0
1 −1 1 0
2 0 1 0
0 0 0 1



B̆w =


−0.1000

0
0.1000
0.0610

 , D̆w =

−0.0209
0.5597
0.1100



Ă =


−1.0000 0.5000 1.0000 0
−1.0000 −0.3000 1.0000 0
0.5000 0 1.0000 0
−0.3782 −0.3782 −0.7707 0.1256



C̆ =

−2.7855 0.4145 4.0806 0.0637
2.7806 −0.4194 4.0015 −0.1001
−0.2632 −0.2632 2.4576 1.0660

 (17)

To check whether the obtained filtering error system is admis-
sible and strictly (Q,S,R)-dissipative, Theorem 1 is utilized.
By solving the LMI in (9), a feasible solution is found which
shows the applicability and effectiveness of the method.

In order to test the admissibility and the dissipativity of sys-
tem (3) with the parameters in (17) from simulation view, Fig.
1-Fig. 3 are depicted as follows. By giving the initial condition
with x̆(0) =

[
−1.6756 −0.2870 0.9170 0

]T and w(k) = 0,
the state responses of system (3) is given in Fig.1 which
illustrates the stability of the system. Combining the character-
istic polynomial with T (s) = −11750s3+136008s2−45229s+3768

25000
which shows the regularity and casuality of the system, the
admissibility of the system is obtained. To demonstrate the dis-
sipativity of the system, we choose w(k) = 0.1e−0.1ksin(k)
and zero initial conditions, the output signal z̆(k) and the
performance signal G(z̆, w, τ) = ⟨z,Qz⟩τ + 2⟨z, Sw⟩τ +
⟨w,Rw⟩τ are proposed in Fig.2 and Fig. 3, respectively. From
Fig. 3, we can see that G(z̆, w, τ) is larger and equal than
zero when τ ≥ 0. Then a sufficient small scalar α > 0 can
be always found such that the inequality in (6) holds, which
shows the dissipativity of the system in (3).
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Fig. 1. State responses

V. CONCLUSION

The problem of reduced-order dissipative filtering of
discrete-time singular systems by using an augmentation sys-
tem approach has been investigated in this paper. A necessary
and sufficient condition in terms of strict LMI has been
proposed by considering an equivalent representation of the
solution set. Augmentation system approach is utilized to solve
the reduce-order dissipative filtering problem to guarantee the
filtering error singular systems to be admissible and strictly
(Q,S,R)-dissipative. The results presented in this paper are
in terms of strict LMIs which make the conditions more
tractable. Finally, a numerical example is given to demonstrate
the effectiveness of our methods.
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