91 research outputs found

    A Single Scalar Field Model of Dark Energy with Equation of State Crossing -1

    Full text link
    In this paper we study the possibility of building models of dark energy with equation of state across -1 and propose explicitly a model with a single scalar field which gives rise to an equation of state larger than -1 in the past and less than -1 at the present time, consistent with the current observations.Comment: 4 pages, 1 figure, the version accepted by JCAP, presentation improved and references adde

    Crossing of the Cosmological Constant Boundary - an Equation of State Description

    Full text link
    The phenomenon of the dark energy transition between the quintessence regime (w>1w > -1) and the phantom regime (w<1w < -1), also known as the cosmological constant boundary crossing, is analyzed in terms of the dark energy equation of state. It is found that the dark energy equation of state in the dark energy models which exhibit the transition is {\em implicitly} defined. The generalizations of the the models explicitly constructed to exhibit the transition are studied to gain insight into the mechanism of the transition. It is found that the cancellation of the terms corresponding to the cosmological constant boundary makes the transition possible.Comment: 8 pages, 2 figures, talk given at QFEXT'05, Barcelona, 5-9 September 200

    UV stable, Lorentz-violating dark energy with transient phantom era

    Full text link
    Phantom fields with negative kinetic energy are often plagued by the vacuum quantum instability in the ultraviolet region. We present a Lorentz-violating dark energy model free from this problem and show that the crossing of the cosmological constant boundary w=-1 to the phantom equation of state is realized before reaching a de Sitter attractor. Another interesting feature is a peculiar time-dependence of the effective Newton's constant; the magnitude of this effect is naturally small but may be close to experimental limits. We also derive momentum scales of instabilities at which tachyons or ghosts appear in the infrared region around the present Hubble scale and clarify the conditions under which tachyonic instabilities do not spoil homogeneity of the present/future Universe.Comment: 22 pages, 7 figures; Presentation modified substantially, results and conclusions unchanged. Journal versio

    Hessence: A New View of Quintom Dark Energy

    Full text link
    Recently a lot of attention has been drawn to build dark energy model in which the equation-of-state parameter ww can cross the phantom divide w=1w=-1. One of models to realize crossing the phantom divide is called quintom model, in which two real scalar fields appears, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub ``hessence'', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-balls formation which gives trouble to the spintessence model (An ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added, 14 pages, 3 eps figures; v3: published versio

    Observational Constraints on Undulant Cosmologies

    Get PDF
    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.Comment: 19 pages, 12 figures in 19 files, uses iopart.cls, iopart10.clo; added reference

    Crossing the Phantom Divide: Theoretical Implications and Observational Status

    Get PDF
    If the dark energy equation of state parameter w(z) crosses the phantom divide line w=-1 (or equivalently if the expression d(H^2(z))/dz - 3\Omega_m H_0^2 (1+z)^2 changes sign) at recent redshifts, then there are two possible cosmological implications: Either the dark energy consists of multiple components with at least one non-canonical phantom component or general relativity needs to be extended to a more general theory on cosmological scales. The former possibility requires the existence of a phantom component which has been shown to suffer from serious theoretical problems and instabilities. Therefore, the later possibility is the simplest realistic theoretical framework in which such a crossing can be realized. After providing a pedagogical description of various dark energy observational probes, we use a set of such probes (including the Gold SnIa sample, the first year SNLS dataset, the 3-year WMAP CMB shift parameter, the SDSS baryon acoustic oscillations peak (BAO), the X-ray gas mass fraction in clusters and the linear growth rate of perturbations at z=0.15 as obtained from the 2dF galaxy redshift survey) to investigate the priors required for cosmological observations to favor crossing of the phantom divide. We find that a low \Omega_m prior (0.2<\Omega_m <0.25) leads, for most observational probes (except of the SNLS data), to an increased probability (mild trend) for phantom divide crossing. An interesting degeneracy of the ISW effect in the CMB perturbation spectrum is also pointed out.Comment: Accepted in JCAP (to appear). Comments added, typos corrected. 19 pages (revtex), 8 figures. The numerical analysis files (Mathematica + Fortran) with instructions are available at http://leandros.physics.uoi.gr/pdl-cross/pdl-cross.htm . The ppt file of a relevant talk may be downloaded from http://leandros.physics.uoi.gr/pdl-cross/pdl2006.pp

    Reconstructing large running-index inflaton potentials

    Full text link
    Recent fits of cosmological parameters by the first year Wilkinson Microwave Anisotropy Probe (WMAP) measurement seem to favor a primordial scalar spectrum with a large varying index from blue to red. We use the inflationary flow equations to reconstruct large running-index inflaton potentials and comment on current status on the inflationary flow. We find previous negligence of higher order slow rolling contributions when using the flow equations would lead to unprecise results.Comment: Final version to appear in Class. Quant. Grav. References adde

    Cosmological Evolution of Interacting Phantom Energy with Dark Matter

    Full text link
    We investigate the cosmological evolution of an interacting phantom energy model in which the phantom field has interaction with the dark matter. We discuss the existence and stability of scaling solutions for two types of specific interactions. One is motivated by the conformal transformation in string theory and the other is motivated by analogy with dissipation. In the former case, there exist no scaling solutions. In the latter case, there exist stable scaling solutions, which may give a phenomenological solution of the coincidence problem. Furthermore, the universe either accelerates forever or ends with a singularity, which is determined by not only the model parameters but also the initial velocity of the phantom field.Comment: 7 pages, 11 figures, RevTe

    Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence Problem

    Full text link
    We study a cosmological model in which phantom dark energy is coupled to dark matter by phenomenologically introducing a coupled term to the equations of motion of dark energy and dark matter. This term is parameterized by a dimensionless coupling function δ\delta, Hubble parameter and the energy density of dark matter, and it describes an energy flow between the dark energy and dark matter. We discuss two cases: one is the case where the equation-of-state ωe\omega_e of the dark energy is a constant; the other is that the dimensionless coupling function δ\delta is a constant. We investigate the effect of the interaction on the evolution of the universe, the total lifetime of the universe, and the ratio of the period when the universe is in the coincidence state to its total lifetime. It turns out that the interaction will produce significant deviation from the case without the interaction.Comment: Latex, 17 pages including 14 figures, minor change

    SO(1,1) dark energy model and the universe transition

    Full text link
    We suggest a scalar model of dark energy with the SO(1,1) symmetry. The model may be reformulated in terms of a real scalar field Φ\Phi and the scale factor aa so that the Lagrangian may be decomposed as that of the real quintessence model plus the negative coupling energy term of Φ\Phi to aa. The existence of the coupling term LcL^c leads to a wider range of wΦw_{\Phi} and overcomes the problem of negative kinetic energy in the phantom universe model. We propose a power-law expansion model of univese with time-dependent power, which can describe the phantom universe and the universe transition from ordinary acceleration to super acceleration.Comment: 12 pages. submitted to CQ
    corecore