221 research outputs found

    Sr3CrN3: a new electride with partially filled d-shells

    Full text link
    Electrides are ionic crystals in which the electrons prefer to occupy free space, serving as anions. Because the electrons prefer to be in the pockets, channels, or layers to the atomic orbitals around the nuclei, it has been challenging to find electrides with partially filled d-shells, since an unoccupied d-shell provides an energetically favourable location for the electrons to occupy. We recently predicted the existence of electrides with partially filled d-shells using high-throughput computational screening. Here, we provide an experimental support using X-ray absorption spectroscopy and X-ray and neutron diffraction to show that Sr3CrN3 is indeed an electride despite its partial d-shell configuration. Our findings indicate that Sr3CrN3 is the first known electride with a partially filled d-shell, in agreement with theory, which significantly broadens the criteria for the search for new electride materials

    On the Unusual Amber Coloration of Nanoporous Sol-gel Processed Al-doped Silica Glass: An Experimental Study

    Get PDF
    Silica is the most abundant component on the earth’s surface. It plays an important role in many natural processes. Silica is also a critical material for a wide range of technical applications such as in optics and electronics. In this work, we discuss our recent experimental observation of the unusual amber coloration of aluminum doped sol-gel glass that has not been reported in the past. We characterized Al-doped sol-gel glasses, prepared at different sintering temperature, using a plethora of techniques to investigate the origin of this unusual coloration and to understand their structural and chemical properties. We used these experimental results to test a number of possible coloring mechanisms. The results suggested this coloring is likely caused by temperature-dependent aluminum-associated defect centers associated with different amorphous-to-crystalline ratios of the annealed sol-gel silica glass structures

    Mn-Mediated Electrochemical Trifluoromethylation/C(sp^2)–H Functionalization Cascade for the Synthesis of Azaheterocycles

    Get PDF
    A general electrohemical strategy for the combined trifluoromethylation/C(sp^2)–H functionalization using Langlois’ reagent as the CF_3 source under oxidant-free conditions was developed. Using Mn salts as the redox mediator, this method provides an efficient and sustainable means to access a variety of functionalized heterocycles bearing a CF_3 moiety. Detailed mechanistic studies are consistent with the formation of CF_3-bound high oxidation state Mn species, suggesting a transition-metal-mediated CF_3 transfer mechanism for this trifluoromethylation/C(sp^2)–H functionalization process

    Isolation of a 2-picolinic acid-assimilating bacterium and its proposed degradation pathway

    Get PDF
    Burkholderia sp. ZD1, aerobically utilizes 2-picolinic acid as a source of carbon, nitrogen and energy, was isolated. ZD1 completely degraded 2-picolinic acid when the initial concentrations ranged from 25 to 300 mg/L. Specific growth rate (μ) and specific consumption rate (q) increased continually in the concentration range of 25–100 mg/L, and then declined. Based on the Haldane model and Andrew’s model, μmax and qmax were calculated as 3.9 and 16.5 h−1, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the main intermediates in the degradation pathway. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was innovatively used to deduce the ring cleavage mechanism of N-heterocycle of 2-picolinic acid. To our knowledge, this is the first report on not only the utilization of 2-picolinic acid by a Burkholderia sp., but also applying FT-ICR-MS and ATR-FTIR for exploring the biodegradation pathway of organic compounds

    Metastatic patterns and prognosis of patients with primary malignant cardiac tumor

    Get PDF
    BackgroundDistant metastases are independent negative prognostic factors for patients with primary malignant cardiac tumors (PMCT). This study aims to further investigate metastatic patterns and their prognostic effects in patients with PMCT.Materials and methodsThis multicenter retrospective study included 218 patients with PMCT diagnosed between 2010 and 2017 from Surveillance, Epidemiology, and End Results (SEER) database. Logistic regression was utilized to identify metastatic risk factors. A Chi-square test was performed to assess the metastatic rate. Kaplan–Meier methods and Cox regression analysis were used to analyze the prognostic effects of metastatic patterns.ResultsSarcoma (p = 0.002) and tumor size¿4 cm (p = 0.006) were independent risk factors of distant metastases in patients with PMCT. Single lung metastasis (about 34%) was the most common of all metastatic patterns, and lung metastases occurred more frequently (17.9%) than bone, liver, and brain. Brain metastases had worst overall survival (OS) and cancer-specific survival (CSS) among other metastases, like lung, bone, liver, and brain (OS: HR = 3.20, 95% CI: 1.02–10.00, p = 0.046; CSS: HR = 3.53, 95% CI: 1.09–11.47, p = 0.036).ConclusionPatients with PMCT who had sarcoma or a tumor larger than 4 cm had a higher risk of distant metastases. Lung was the most common metastatic site, and brain metastases had worst survival among others, such as lung, bone, liver, and brain. The results of this study provide insight for early detection, diagnosis, and treatment of distant metastases associated with PMCT
    • …
    corecore