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On the unusual amber coloration of 
nanoporous sol-gel processed Al-
doped silica glass: An experimental 
study
Alvin Chang   1, Yujuan He1, Maria A. Torres Arango2, Maoyu Wang1, Yang Ren3, 
Zhenxing Feng   1, Chih-Hung Chang1 & Konstantinos A. Sierros   2

Silica is the most abundant component on the earth’s surface. It plays an important role in many natural 
processes. Silica is also a critical material for a wide range of technical applications such as in optics 
and electronics. In this work, we discuss our recent experimental observation of the unusual amber 
coloration of aluminum doped sol-gel glass that has not been reported in the past. We characterized 
Al-doped sol-gel glasses, prepared at different sintering temperature, using a plethora of techniques 
to investigate the origin of this unusual coloration and to understand their structural and chemical 
properties. We used these experimental results to test a number of possible coloring mechanisms. The 
results suggested this coloring is likely caused by temperature-dependent aluminum-associated defect 
centers associated with different amorphous-to-crystalline ratios of the annealed sol-gel silica glass 
structures.

Silica occurs in nature in many forms and is a key component of the earth’s crust and mantle. It plays an important 
role in many geological1 and biological processes2. In industry, silica is an important material for a wide range 
of applications3 including optics, electronics, catalysts, sorbents, and as fillers for many products such as paints, 
rubbers, and roadways. Thus, the properties of silica are of fundamental interest in many areas. Silica can be syn-
thesized via different approaches to produce products in various forms including fused silica4, fumed silica1,5, sil-
ica gel6, and aerogels7,8. As demonstrated by several groups, the sol-gel method is a unique technique to produce 
silica that is difficult to achieve by other processes such as melting9–11.

In this study, we report on the discovery of an unusual amber coloration of nanoporous sol-gel based silica 
glass when doped with Aluminum (Al). In particular, Al-doped silica glass was prepared via a sol-gel method. 
Surprisingly, the obtained glass exhibited colors ranging from clear, light amber, dark brown, and back to 
clear again at different thermal annealing temperatures. Aluminum is a known dopant that alters silica properties 
such as melt rheology12, corrosion resistance13, and molecular diffusivity of oxygen14. The effects of aluminum 
dopant on density, refractive index, and ultrasonic transmission of silica glasses have been reported in the litera-
ture15. However, we could not find reports of this unusual sintering-temperature dependent amber coloration of 
sol-gel glass in the literature.

Colored glasses find several important applications in art and technology. Early glass coloring techniques trace 
their origin back to ancient Egypt and Rome16. Nowadays, a variety of techniques with different color producing 
mechanisms are available to render colors in glass17. For example, the addition of iron oxides or iron polysulfides 
can produce bluish-green and amber colored glass, respectively18. Green and amber colored glasses are key mate-
rials to the manufacturing of food and beverage bottles for maintaining freshness and long-lasting taste19.

Another technique to produce colored glass employs the addition of nanoparticles. Adding small amounts 
of gold can produce ruby-gold glass, which is arguably the most beautiful and celebrated colored glass. In this 
case, the intense red color originates from the dispersed plasmonic-resonant gold nanoparticles20. As such, the 
use of light scattering is an alternative approach to yield color in the glass. Phase separated glasses exhibit an 

1School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, 
USA. 2Mechanical & Aerospace Engineering, West Virginia University, Morgantown, WV, 26506 – 6106, USA. 
3Advanced Photon Source, Argonne National Laboratory, 9700S Cass Avenue Argonne, Chicago, IL, 60439, USA. 
Correspondence and requests for materials should be addressed to K.A.S. (email: kostas.sierros@mail.wvu.edu)

Received: 6 November 2018

Accepted: 6 August 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-48917-4
http://orcid.org/0000-0001-5262-5414
http://orcid.org/0000-0001-7598-5076
http://orcid.org/0000-0002-6984-6376
mailto:kostas.sierros@mail.wvu.edu


2Scientific Reports |         (2019) 9:12474  | https://doi.org/10.1038/s41598-019-48917-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

opaque color due to diffuse light scattering caused by the difference in the refractive index of each phase. Tomioka 
et al.21 investigated the phase separation behavior of multicomponent oxide glasses and observed that the dif-
ferent microstructures of phase separation resulted in a whitish to a bluish color. Another approach is to cre-
ate three-dimensional photonic structures to render noniridescent structural colors. Schroden et al.22 prepared 
inverse opal photonic crystals of silica using ordered arrays of uniformly sized polymer spheres infiltrated with 
silica fluid precursors. The color characteristics, physical and chemical properties, and cost of manufacturing 
vary significantly between these different approaches. However, many coloring mechanisms are still not well 
understood. To effectively use the suitable approaches for various applications, it is important to understand 
their structure and process relationships. To elucidate the origin of this unusual coloration and to understand 
their structural and chemical properties, we characterized Al-doped sol-gel glasses prepared at different sintering 
temperature using various techniques. We used these experimental results to test a number of possible coloring 
mechanisms.

Results and Discussion
Figure 1 depicts the coloration stages of Al-doped and undoped Silica glass along with optical transmittance data 
ranging from UV to Visible to IR light for various annealing temperatures. For the Al-doped silica materials, the 
color ranges from clear when there is no annealing and when annealed to 250 °C, to light amber at 350 °C, and to 
dark amber at 450 °C as shown in Fig. 1. At 800 °C the glass coloration returns to a clear and optically transparent 
color. There is no such coloration range, nor are there even any color changes observed for the undoped silica 
glass annealed at the same temperature range. The sample annealed at 800 °C exhibits a negative absorbance in 
the UV region (Fig. 2) which is due to its photoluminescent emission (S5 & 7, Support Material) and may be 
attributed to the Al dopant19. This is not observed for the other samples annealed at different temperatures and 
highlights the potential role that the dopant plays in the coloration process. We cannot obtain monolithic glass 
from the undoped silica gel as the aluminum is needed to strengthen the glass.

In order to understand the uncommon amber coloration, it is important to investigate chemical and structural 
properties of the prepared sol-gel glass system as plausible causes. An initial approach is to hypothesize that the 
potential formation of carbon (C), elemental composition differences formed by annealing, and/or contamina-
tion of the sol-gel glass with other elements such as Fe and S can render an amber color with temperature depend-
ence23. For this study, we employed X-ray photoelectron spectroscopy (XPS) to test these hypotheses. Figure 3 
(left) shows the XPS survey spectra for 250 °C and 450 °C annealed glass, respectively. Presence of Si 2p and O 1s 
peaks are observed. However, there is a negligible amount of adventitious C detected. Usually, adventitious C con-
tamination is expected to include C-C, C-O-C, and O-C=O components at around 284.8 eV with some C layer 
formation appearing even at 286 eV for the native oxide of Al24. Figure 3 (right) depicts the atomic percentage 
change of Al, C, O and Si with annealing temperature. There is very little elemental composition difference found 
for all elements as annealing temperature increases. In particular, the average atomic percentage of C is found to 
be below 1% in all cases, as shown by Fig. 3 (right). Therefore, the formation of C or any significant composition 
differences and contamination by other elements can be excluded as a possible reason for the amber coloration.

Another plausible cause for the unusual coloration may be the interaction of porous glass microstructures 
with incident light. This phenomenon of tunable structural coloring can be observed in many biological systems 
such as in butterfly wings25 and plants26. In this case; we hypothesize that an amorphous array of air pores with 

Figure 1.  (Top) Al-doped silica sol-gel glass samples prepared with and without annealing exhibiting 
temperature-dependent clear and amber coloring. (Bottom) Undoped silica glass is depicted for comparison 
purposes.
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short-range order forming in the structure leads to the unusual amber color. In order to test this hypothesis, 
we conducted porosimetry, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) 
experiments, as shown in Fig. 4. Barrett-Joyner-Halenda (BJH)27 N adsorption measurements (Fig. 5) suggest that 
formed pores lie in the micro-pore range (i.e., between 0 and 2 nm). Furthermore, the pore size decreased with 
increased annealing temperature. SEM and TEM measurements further validate the porosimetry data. Such size 
range clearly does not produce structural color in the visible range28.

To explore the possible structural changes that may be associated with the amber glass coloration, Pair 
Distribution Function - PDF (Fig. 6a) was conducted on these Al-doped glasses annealed at various tempera-
tures. As shown in Fig. 6a, the PDF spectra shows similar patterns for an amorphous Si glass, suggesting that 
ensemble-averaged local structures are not responsible for the coloration in amber glasses. However, some dif-
ferences were found for element-specific XAS spectra. Figure 6b is the Si K-edge XAS around 1848 eV29. It shows 
that all Al-doped Si glasses are in the same amorphous phase as SiO2, which eliminates the phase transition 
influence30. In contrast, Al and O XAS spectra in Fig. 6c,d, respectively, exhibit temperature-dependent changes. 
It is noted that Al doped in amber glasses are mostly in the metallic state as featured by a peak at 1560 eV29,31, and 
that the metallic Al peak intensity decreases as temperature increases. Interestingly, the Al0 peak (represented by 
the dashed line in Fig. 6c) intensities of amber glass annealed at 350 °C and 450 °C are the lowest, indicating the 
existence of aluminum oxide (Al2O3) that may introduce defects in the SiO2 unit cell.

Those defects are also suggested in O K-edge XAS (Fig. 6d). Peak B (Fig. 6d) around 534 eV is assigned to the 
unoccupied O states of SiOx

32, which show the similar temperature-dependent trend as that of the metallic Al0 
peak in Fig. 6c: a higher peak B (more unoccupied O states) when temperature raises up to 350 °C, and a much 
lower peak B (less unoccupied O states) when the temperature increases to 800 °C. In addition, peaks C and D 
(Fig. 6d) represent the existence of single crystalline and amorphous SiOx

33. It also shows the same variation 
trend as that of unoccupied O states and the metallic Al° peak. Therefore, annealing temperature affects the 

Figure 2.  Absorption spectra of the samples annealed at different temperatures.

Figure 3.  (Left) X-ray photoelectron spectroscopy spectra for 250 °C and 450 °C annealed glass. (Right) 
Average atomic percentage vs. temperature for Al, C, O, and Si elements.

https://doi.org/10.1038/s41598-019-48917-4
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amount of Al atoms doped into the SiO2 unit cell, which results in different oxygen defects and different degrees 
of amorphous/crystalline ratio due to the various valence state of Al and Si. A considerable amount of studies 
on point defects in crystalline silica (i.e., quartz) have been conducted due to the important role of quartz in 
nature and its many technical applications34–48. These point defects are either structural related or impurity related 
defects, including the [AlO4]°, and [AlO4/H+] centers, oxygen, and oxygen vacancy-related defect centers35,36. The 
aluminum-associated hole center, [AlO4]°, is believed to cause the “smoky” coloration of quartz crystals. Griffiths 
et al. reported the paramagnetic centers with Al hyperfine structure in irradiated and natural “smoky” α-quartz 
first37. Since then many research groups have investigated the aluminum-associated hole centers in “smoky” 
quartz crystals38–48. Subjecting synthetic α-quartz to high energy electrons radiation, Koumvakalis introduced 
an optical absorption in the visible range and attributed it to the aluminum-associated hole center via simultane-
ous optical absorption and ESR measurements45. Our data suggest that the unusual amber coloration from the 
aluminum-doped sol-gel silica glass could be associated with the aluminum-associated hole centers.

EPR experiments were performed on glass annealed to 250 °C, 450 °C, and 800 °C, and the results are pre-
sented to further study the defects (Fig. 7). Common defects in silica or quartz include oxygen deficiency-related 
defects and oxygen excess-related defects. Usually, silica with either of these defects have g-values in the range of 
1.997 to 2.0835,36,41. The difference between the spectrum of the 450 °C sample from the 250 °C or 800 °C sample 
are the appearance of a peak around 2.0036 g in the 450 °C sample, the greater intensity of the 2.074–2.075 g peak 
in the 450 °C sample and the appearance of a peak around 2.0036 g in the 450 °C sample. The amber coloration 
may be attributed to the defects associated with the peak appearing at 2.0036 g. This peak could be related to the 
aluminum-associated hole centers, as an Al3+ ion substitutes a Si3+ ion, leaving an unpaired electron at one of the 

Figure 4.  The SEM (a–c) and TEM (d–f) images of the glass samples heated to 250 °C, 450 °C, and 800 °C, 
respectively.
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Figure 5.  (a) Nitrogen adsorption-desorption isotherm of the glass samples heated to the different 
temperatures. The Barrett- Joyner-Halenda (BJH) pore size distribution plot of the glass samples heated to (b) 
250 °C, (c) 450 °C, and (d) 800 °C.

Figure 6.  (a) Pair distribution function (PDF) data and X-ray absorption spectroscopy data at the (b) Si K-edge 
(c) Al K-edge, and (d) O K-edge for Al-doped Si glass at various annealing temperatures.

https://doi.org/10.1038/s41598-019-48917-4
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four oxygen atoms next to the Al center39,43. This localized spin gives rise to an ESR signal and is responsible for 
the smoky coloration in irradiated α-quartz. According to the EPR study of silicon dioxide, the g-value around 
2.08 could be due to the non-bridging oxygen hole center35. In our case, the intensity of this hole center varied 
with different sintering temperatures, which might be due to the thermodynamic preferences of the coordination 
among silicon, aluminum, and oxygen.

In this work, we report for the first-time experimental observations on the unusual amber coloration of 
sol-gel prepared amber glass annealed at different temperatures up to 800 °C. In order to understand this phe-
nomenon, we employed different fundamental hypotheses from chemical and structural related changes to 
temperature-related defect center generation. The latter is currently considered to be the most plausible cause of 
such unusual coloring behavior. This new material has the potential for applications such as porous encapsulation 
of molecules and cells with UV and blue light blocking capability. Furthermore, the new insight in defect chemis-
try of aluminum doped sol-gel silica can be utilized in optoelectronics and possibly photocatalysis.

Methods
In our work, the sol-gel approach was applied to fabricate the various-colored glasses. 2.5 molar percentage alu-
minum nitrate precursor (0.094 grams) was added into a mixture of 2.2 mL tetraethyl orthosilicate (TEOS), 1 mL 
DI H2O, and 2 mL Ethanol. A small amount (around 0.5 mL) of 1 M hydrochloric acid is also added into the mix-
ture. The resulting solution was then stirred at room temperature for 1 hour to form the sol. The sol is then left to 
sit at room temperature for a few days, and a cap completely covers the opening to prevent any air from getting 
into the solution. After a few days, pin holes are made in the cap to allow for flow into the gel, and it is left to sit 
for another one to two weeks. Finally, the gel is heated at a rate of 0.5 °C to 60 °C and then at a rate of 1 °C to the 
final curing temperature.

The pore structure of the glass was determined using BET (Tristar II 3020, Surface Area Analyzer), Scanning 
Electron Microscopy (FEI QUANTA 600 F environmental SEM) and Transmission Electron Microscopy (FEI 
TITAN 80–200 TEM/STEM). The optical property was measured using UV-Vis spectrometer with a 10 mm 
integrated sphere (JASCO V-670). The elemental composition and chemical bonding were characterized using 
X-ray Photoelectron Spectroscopy (ThermoScientific ESCALAB 250 XPS). The pair distribution function (PDF) 
experiment was carried out at the 11 ID-C stations of the Advanced Phonon Source (APS), Argonne National 
Laboratory (ANL). A focused monochromatic X-ray beam about 5 μm in diameter (FWHM) with a wavelength of 
0.4066 Å was used for the diffraction experiments. A MAR345 image plate recorded the diffraction data, and then 
the two-dimensional (2D) images were integrated to one-dimensional (1D) patterns with the Fit2D program. Si, 
Al and O K-edge X-ray absorption spectroscopy (XAS) measurements were conducted at the bending magnet 
beamline 6.3.1 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL) with an 
electron energy of 1.9 GeV and a current of 500 mA. Total electron yield mode was used. Electron paramagnetic 
resonance (EPR) measurements were performed by the Bruker Elexsys E 500 spectrometer with a frequency of 
100 kHz. The signals of the defects were observed with a microwave power of 10 mW at 77 K.

Figure 7.  EPR data of the samples annealed at different temperatures.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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