9 research outputs found

    Structural behavior analysis of high strength steel-concrete composite girders

    No full text
    In order to study structural behaviors of high strength steel-concrete composite girders, 14 group-components models with different geometry parameters and material properties were built by using ANSYS software under deuce symmetrical loads at mid-span. The analysis result indicates that steel girder bears about 77. 0% of whole vertical shear strength in plastic state, and the ratios of maximum and minimum values of mid-span deflections for different material strength girders in elastic and plastic states are 79. 5% and 28. 0% respectively; the ratios of maximum and minimum values of mid-span deflections for different transverse bar ratios and widthes of concrete slab girders in plastic state are 62. 1% and 53. 3% respectively; the ratios of maximum and minimum values of longitudinal slips for different material strengthes, widthes of concrete slab, transverse bar ratios and thicknesses of concrete deck girders in plastic state are 25. 0%, 41. 9%, 63. 2% and 70. 7% respectively. Therefore, increasing the strength and section size of steel is economic and reasonable method to increase the vertical shear strength of the girders; the steel and concrete strengthes affect little on the mid-span deflection of the girders in elastic state, and the transverse bar ratio and the width of concrete slab have larger effect on the mid-span deflection in plastic state; the geometry parameters and material properties of the girders have little effect on the longitudinal slip in elastic state, but the material strength, width of concrete slab, transverse bar ratio and thickness of concrete deck have obvious effects on the longitudinal slip in plastic state

    Modeling of Laser Melting Deposition Equipment Based on Digital Twin

    No full text
    With the rapid development of new-generation information technologies such as big data, cloud computing, Internet of Things, and mobile internet in traditional manufacturing, the development of intelligent manufacturing (IM) is accelerating. Digital twin is an important method to achieve the goal of IM, and provides an effective means for the integrated development of design and manufacturing (R & M). In view of the problems of long installation and debugging cycles, and process parameters requiring multiple trial and error in the research and development (R & D) process of laser melting deposition (LMD) equipment, this paper focuses on building an LMD equipment model based on digital twin technology. It involves performing virtual assembly, motion setting, collision inspection, and PLC debugging, thereby providing an innovative method and insights for improving the R & D efficiency of the IM of LMD equipment

    Modeling of Laser Melting Deposition Equipment Based on Digital Twin

    No full text
    With the rapid development of new-generation information technologies such as big data, cloud computing, Internet of Things, and mobile internet in traditional manufacturing, the development of intelligent manufacturing (IM) is accelerating. Digital twin is an important method to achieve the goal of IM, and provides an effective means for the integrated development of design and manufacturing (R & M). In view of the problems of long installation and debugging cycles, and process parameters requiring multiple trial and error in the research and development (R & D) process of laser melting deposition (LMD) equipment, this paper focuses on building an LMD equipment model based on digital twin technology. It involves performing virtual assembly, motion setting, collision inspection, and PLC debugging, thereby providing an innovative method and insights for improving the R & D efficiency of the IM of LMD equipment

    Study on the Microstructure and Properties of Welded Joints of Laser Shock Peening on HC420LA Low-Alloy High-Tensile Steel

    No full text
    Laser shock peening is a promising surface strengthening technology that can effectively improve the mechanical properties of materials. This paper is based on the laser shock peening process for HC420LA low-alloy high-strength steel weldments. Contrast analysis of the evolution of the microstructure, residual stress distribution and mechanical properties of the welded joints before and after the laser shock peening on each region is carried out; a combination of tensile fracture and impact toughness fracture morphology analyses of laser shock peening on the welded joint strength and toughness regulation mechanism are also completed. The results show that the laser shock peening can refine the microstructure of the welded joint effectively, the microhardness of all areas of the joint increases and the weld residual tensile stresses are transformed into beneficial residual compressive stresses, affecting a layer depth of 600 μm. In addition, the strength and impact toughness of welded joints of HC420LA low-alloy high-strength steel are improved
    corecore