10 research outputs found
Open Compound Domain Adaptation with Object Style Compensation for Semantic Segmentation
Many methods of semantic image segmentation have borrowed the success of open
compound domain adaptation. They minimize the style gap between the images of
source and target domains, more easily predicting the accurate pseudo
annotations for target domain's images that train segmentation network. The
existing methods globally adapt the scene style of the images, whereas the
object styles of different categories or instances are adapted improperly. This
paper proposes the Object Style Compensation, where we construct the
Object-Level Discrepancy Memory with multiple sets of discrepancy features. The
discrepancy features in a set capture the style changes of the same category's
object instances adapted from target to source domains. We learn the
discrepancy features from the images of source and target domains, storing the
discrepancy features in memory. With this memory, we select appropriate
discrepancy features for compensating the style information of the object
instances of various categories, adapting the object styles to a unified style
of source domain. Our method enables a more accurate computation of the pseudo
annotations for target domain's images, thus yielding state-of-the-art results
on different datasets.Comment: Accepted by NeurlPS202
Dynamic V2X Autonomous Perception from Road-to-Vehicle Vision
Vehicle-to-everything (V2X) perception is an innovative technology that
enhances vehicle perception accuracy, thereby elevating the security and
reliability of autonomous systems. However, existing V2X perception methods
focus on static scenes from mainly vehicle-based vision, which is constrained
by sensor capabilities and communication loads. To adapt V2X perception models
to dynamic scenes, we propose to build V2X perception from road-to-vehicle
vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method. In
AR2VP,we leverage roadside units to offer stable, wide-range sensing
capabilities and serve as communication hubs. AR2VP is devised to tackle both
intra-scene and inter-scene changes. For the former, we construct a dynamic
perception representing module, which efficiently integrates vehicle
perceptions, enabling vehicles to capture a more comprehensive range of dynamic
factors within the scene.Moreover, we introduce a road-to-vehicle perception
compensating module, aimed at preserving the maximized roadside unit perception
information in the presence of intra-scene changes.For inter-scene changes, we
implement an experience replay mechanism leveraging the roadside unit's storage
capacity to retain a subset of historical scene data, maintaining model
robustness in response to inter-scene shifts. We conduct perception experiment
on 3D object detection and segmentation, and the results show that AR2VP excels
in both performance-bandwidth trade-offs and adaptability within dynamic
environments
Identification and treatment of intestinal malrotation with midgut volvulus in childhood: a multicenter retrospective study
BackgroundIntestinal malrotation is a rare condition, and its delayed diagnosis can lead to fatal consequences. This study aimed to investigate the identification and treatment of malrotation in children.MethodsClinical data, imaging, operative findings, and early postoperative outcomes of 75 children with malrotation were retrospectively analyzed.ResultsThe mean age was 6.18 ± 4.93 days and 51.26 ± 70.13 months in the neonatal group (56 patients) and non-neonatal group (19 patients), respectively. Sixty-seven patients were under the age of 1 year at the time of diagnosis. The occurrence of bilious vomiting and jaundice was significantly higher in the neonatal group (89.29%) than that in the non-neonatal group (37.5%), p < 0.05 and p < 0.01, respectively. The incidence of abnormal ultrasound (US) findings was 97.30% and 100%, respectively, and the sensitivities of the upper gastrointestinal series were 84.21% and 87.5%, respectively. Sixty-six (88%) patients had midgut volvulus, including in utero volvulus (two patients) and irreversible intestinal ischemia (four patients). Most neonates (89.29%) underwent open Ladd's procedure with a shorter operative time (p < 0.01). Reoperation was performed for postoperative complications (four patients) or missed comorbidities (two patients).ConclusionsNon-bilious vomiting was the initial symptom in >10% of neonates and nearly 40% of non-neonates. This highlights the importance for emergency physicians and surgeons to be cautious about ruling out malrotation in patients with non-bilious vomiting. Utilizing US can obviate the need for contrast examinations owing to its higher diagnostic accuracy and rapid diagnosis and can be recommended as a first-line imaging technique. Additionally, open surgery is still an option for neonatal patients
Experimental Study of the Heat-Transfer Performance of an Extra-Long Gravity-Assisted Heat Pipe Aiming at Geothermal Heat Exploitation
The installation and operation of enhanced geothermal systems (EGS) involves many challenges. These challenges include the high cost and high risk associated with the investment capital, potential large working-fluid leakage, corrosion of equipment, and subsiding land. A super-long heat pipe can be used for geothermal exploitation to avoid these problems. In this paper, a high aspect-ratio heat pipe (30 m long, 17 mm in inner diameter) is installed vertically. Experiments are then carried out to study its heat-transfer performance and characteristics using several filling ratios of deionized water, different heating powers, and various cooling-water flowrates. The results show that the optimal filling-ratio is about 40% of the volume of the vaporizing section of the heat pipe. Compared with a conventional short heat pipe, the extra-long heat pipe experiences significant thermal vibration. The oscillation frequency depends on the heating power and working-fluid filling ratio. With increasing cooling-water flow rate, the heat-transfer rate of the heat pipe increases before it reaches a plateau. In addition, we investigate the heat-transfer performance of the heat pipe for an extreme working-fluid filling ratio; the results indicate that the lower part of the heat pipe is filled with vapor, which reduces the heat-transfer to the top part. Based on the experimental data, guidelines for designing a heat pipe that can be really used for the exploitation of earth-deep geothermal energy are analyzed
Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells
Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS), and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV), which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells
Response of Nitrification and Crop Yield to the Presence of NBPT and DCD in a Wheat-Corn Double Cropping System
The excessive application of nitrogen fertilizer aggravated the loss of nitrogen in farmland and exerted detrimental effects on the soil and water environment. Examining the effects of N-(n-Butyl)thiophosphoric triamide (NBPT) and nitrification inhibitor dicyandiamide (DCD) on nitrification and crop yield in wheat-corn double cropping systems would provide valuable insights for improving nitrogen efficiency and ensuring a rational application of inhibitors. A field experiment lasting one and a half years was performed in the winter wheat–summer maize double agroecosystem in North China. The four treatments that were applied included (I) conventional fertilization without inhibitors (CK), (II) conventional fertilization with 0.26 g/m2 NBPT (NBPT), (III) conventional fertilization with 1.00 g/m2 DCD (DCD), and (IV) conventional fertilization with 0.26 g/m2 NBPT and 1.00 g/m2 DCD (NBPT + DCD). The results demonstrated that the combined use of NBPT and DCD exerted better effects in reducing NO3−-N leaching. Nitrification could be inhibited for up to 95 days by combining NBPT and DCD, while 21 days by DCD. Ammonia-oxidizing archaea (AOA) (R2 = 0.07159, p 2 = 0.09359, p 3−-N content, which indicated that the ammoxidation process was mainly regulated by AOA and AOB, instead of comammox in the winter wheat–summer maize double agroecosystem in North China