6,155 research outputs found

    Simulation of an all-optical 1 x 2 SMZ switch with a high contrast ratio

    Get PDF
    Abstract — An all-optical 1×2 high contrast ratio (CR) switch based on the symmetric Mach-Zehnder (SMZ) interferometers is presented. Simulation results show a remarkable improvement of the inter-output CR (~25 dB) between the two outputs compared with an existing SMZ switch. It is shown that the proposed switch offers high values of inter-output CR (> 32dB) over a wide range of input powers using appropriate power of the control pulses. I

    Multi-particle quantum walks in one-dimensional lattice

    Full text link
    Quantum walk is a counterpart of classical random walk in the quantum regime that exhibits non-classical behaviors and outperforms classical random walk in various aspects. It has been known that the spatial probability distribution of a single-particle quantum walk can expand quadratically in time while a single-particle classical random walk can do only linearly. In this paper, we analytically study the discrete-time quantum walk of non-interacting multiple particles in a one-dimensional infinite lattice, and investigate the role of entanglement and exchange symmetry in the position distribution of the particles during the quantum walk. To analyze the position distribution of multi-particle quantum walk, we consider the relative distance between particles, and study how it changes with the number of walk steps. We compute the relative distance asymptotically for a large number of walk steps and find that the distance increases quadratically with the number of walk steps. We also study the extremal relative distances between the particles, and show the role of the exchange symmetry of the initial state in the distribution of the particles. Our study further shows the dependence of two-particle correlations, two-particle position distributions on the exchange symmetry, and find exponential decrement of the entanglement of the extremal state with the number of particles

    Distributed Optimal Frequency Control Considering a Nonlinear Network-Preserving Model

    Full text link
    This paper addresses the distributed optimal frequency control of power systems considering a network-preserving model with nonlinear power flows and excitation voltage dynamics. Salient features of the proposed distributed control strategy are fourfold: i) nonlinearity is considered to cope with large disturbances; ii) only a part of generators are controllable; iii) no load measurement is required; iv) communication connectivity is required only for the controllable generators. To this end, benefiting from the concept of 'virtual load demand', we first design the distributed controller for the controllable generators by leveraging the primal-dual decomposition technique. We then propose a method to estimate the virtual load demand of each controllable generator based on local frequencies. We derive incremental passivity conditions for the uncontrollable generators. Finally, we prove that the closed-loop system is asymptotically stable and its equilibrium attains the optimal solution to the associated economic dispatch problem. Simulations, including small and large-disturbance scenarios, are carried on the New England system, demonstrating the effectiveness of our design

    The NN phase shifts in the extended quark-delocalization, color-screening model

    Get PDF
    An alternative method is applied to the study of nucleon-nucleon(NN) scattering phase shifts in the framework of extended quark delocalization, color-screening model(QDCSM), where the one-pion-exchange(OPE) with short-range cutoff is included.Comment: 5 pages, 3 figures, two-colum

    Optimisation of the key SOA parameters for amplification and switching

    Get PDF
    Wireless Sensor Networks (WSN) are composed of small, low cost, resource-constrained computing nodes equipped with low power wireless transceivers. Generally, they are embedded in their environment to perform some specific monitoring and/or control function. Unlike wired networks that have dedicated routers for network connectivity and message forwarding, every node in a WSN can act as a router in a multi-hop network. A WSN can offer a cheap, applicationspecific solution in a variety of situations including military and disaster response scenarios, where other approaches are not viable. Due to their unattended nature and deployment in possibly hostile environmental conditions, there are many challenges in ensuring that a WSN is formed effectively and survives long enough to fulfil its function. Securing a WSN against attack is a particular challenge. Traditional encryption mechanisms are resource hungry and are not sufficient alone to provide a complete solution. This project is concerned with secure routing protocols. Formal methods are used to model and analyse the design of existing protocols and to demonstrate some previously unreported weaknesses
    • …
    corecore