2,864 research outputs found
Realization of the Trajectory Propagation in the MM-SQC Dynamics by Using Machine Learning
The supervised machine learning (ML) approach is applied to realize the
trajectory-based nonadiabatic dynamics within the framework of the symmetrical
quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian
(MM-SQC). After the construction of the long short-term memory recurrent neural
network (LSTM-RNN) model, it is used to perform the entire trajectory
evolutions from initial sampling conditions. The proposed idea is proven to be
reliable and accurate in the simulations of the dynamics of several
site-exciton electron-phonon coupling models, which cover two-site and
three-site systems with biased and unbiased energy levels, as well as include a
few or many phonon modes. The LSTM-RNN approach also shows the powerful ability
to obtain the accurate and stable results for the long-time evolutions. It
indicates that the LSTM-RNN model perfectly captures of dynamical correction
information in the trajectory evolution in the MM-SQC dynamics. Our work
provides the possibility to employ the ML methods in the simulation of the
trajectory-based nonadiabatic dynamic of complex systems with a large number of
degrees of freedoms
Intermediate electrostatic field for the elongation method
A simple way to improve the accuracy of the fragmentation methods is proposed. The formalism was applied to the elongation (ELG) method at restricted open-shell Hartree-Fock (ROHF) level of theory. The α-helix conformer of polyglycine was taken as a model system. The modified ELG method includes a simplified electrostatic field resulting from point-charge distribution of the system’s environment. In this way the long-distance polarization is approximately taken into account. The field attenuates during the ELG process to eventually disappear when the final structure is reached. The point-charge distributions for each ELG step are obtained from charge sensitivity analysis (CSA) in force-field atoms resolution. The presence of the intermediate field improves the accuracy of ELG calculations. The errors in total energy and its kinetic and potential contributions are reduced by at least one-order of magnitude. In addition the SCF convergence of ROHF scheme is improved
Conformational change of the AcrR regulator reveals a possible mechanism of induction
The Escherichia coli AcrR multidrug-binding protein represses transcription of acrAB and is induced by many structurally unrelated cytotoxic compounds. The crystal structure of AcrR in space group P2221 has been reported previously. This P2221 structure has provided direct information about the multidrug-binding site and important residues for drug recognition. Here, a crystal structure of this regulator in space group P31 is presented. Comparison of the two AcrR structures reveals possible mechanisms of ligand binding and AcrR regulation
Sub-channel analysis for LBE cooled fuel assembly with grid type spacers of China initiative accelerator driven system
The present study focuses on the thermal hydraulic characteristics of fuel assemblies in the China Initiative Accelerator Driven subcritical System (CiADS), which utilizes grid-type spacers to support lead bismuth eutectic (LBE) cooled fast reactors. While the structural design and mechanical analysis of CiADS triangular fuel assemblies with grid-type spacers have been preliminarily investigated, there is a pressing need to study the thermal hydraulic behavior of liquid LBE within these fuel assemblies. This analysis is crucial for assessing the safety and economy of the CiADS subcritical reactor. The sub-channel analysis code, based on the lumped parameter method, plays a vital role in rapidly evaluating the safety features of LBE-cooled fast reactor fuel assemblies. To comprehensively evaluate the thermal hydraulic performance of fuel assemblies with grid-type spacers in the CiADS LBE cooling system, the flow pressure drop model, turbulent mixing model, and convective heat transfer model for the fuel assembly structure with grid-type spacers were incorporated into the existing CiADS sub-channel analysis code. This enhanced code has been successfully employed in the thermal hydraulic analysis of fuel assemblies utilizing wire-type spacers in the CiADS system. To verify the validity and accuracy of the modified CiADS sub-channel analysis code in calculating triangular fuel assemblies with grid-type spacers, the code was first utilized to replicate a 19-rods flow heat transfer experiment with grid-type spacers cooling liquid LBE. A comparison between the simulation and experimental results confirms that the CiADS sub-channel analysis code can predict the coolant temperature and fuel rod surface temperature in fuel assemblies with grid-type spacers. Subsequently, the structure and thermal hydraulic design of the latest CiADS fuel assembly with grid-type spacers were reviewed. Finally, taking into account the aforementioned enhancements to the CiADS sub-channel analysis code, a comprehensive thermo-hydraulic calculation of the CiADS fuel assembly with grid-type spacers was conducted. The results demonstrate that the coolant outlet temperature, maximum cladding temperature, and maximum fuel pellet temperature all fall within the design parameters of CiADS. Furthermore, the impact of the number of rods in different rod bundles (91, 61, 37, and 7 rods) on thermal hydraulic performance was analyzed. The findings indicate that, while ensuring calculation accuracy and efficiency, the results obtained from the 37-rod bundle can effectively reflect the thermal hydraulic behavior of the reactor core
Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH\u3csub\u3e4\u3c/sub\u3eSCN
The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films
How Film Mulch Increases the Corn Yield by Improving the Soil Moisture and Temperature in the Early Growing Period in a Cool, Semi-Arid Area
Film mulch increases the crop grain yield via topsoil moisture and temperature improvement in cool, semi-arid areas, but little is known about the role of the hydrological and thermic relationship between early and later crop growth seasons in the improving grain yield. We conducted a field experiment to compare polyethylene film mulching (PM) with no mulching (CK) in 2014 and 2015 on the semi-arid Loess Plateau of China. Compared to CK, PM decreased evapotranspiration before the twelve-leaf stage (V12), but increased evapotranspiration after the V12 stage, and significantly increased the topsoil temperature before the six-leaf stage (V6) and the accumulation of soil growing degree days. Corn plants with PM treatment reached the V6 stage earlier, significantly enhancing the contemporary dry matter accumulation. The harvest index, 100-grain weight, and grain yield significantly increased in PM relative to CK in both years. The growing period to the whole growing season evapotranspiration ratio had a negative correlation with the grain yield before the V12 stage, but a positive correlation after the V12 stage. The grain yield had a negative correlation with the air growing degree days (GDDair) before the V6 stage, but positive correlation from silking to harvest. Conclusively, film mulch promoted the early development of maize via an increased soil temperature before the V6 stage, saved soil water before the V12 stage, resulted in a longer grain-filling period, and increased the GDDair and evapotranspiration during the grain-filling period, which is key to increasing the maize yield
- …