38 research outputs found

    The implications of fossil fuel supply constraints on climate change projections: a supply-side analysis

    Get PDF
    Climate projections are based on emission scenarios. The emission scenarios used by the IPCC and by mainstream climate scientists are largely derived from the predicted demand for fossil fuels, and in our view take insufficient consideration of the constrained emissions that are likely due to the depletion of these fuels. This paper, by contrast, takes a supply-side view of CO emission, and generates two supply-driven emission scenarios based on a comprehensive investigation of likely long-term pathways of fossil fuel production drawn from peer-reviewed literature published since 2000. The potential rapid increases in the supply of the non-conventional fossil fuels are also investigated. Climate projections calculated in this paper indicate that the future atmospheric CO concentration will not exceed 610ppm in this century; and that the increase in global surface temperature will be lower than 2.6°C compared to pre-industrial level even if there is a significant increase in the production of non-conventional fossil fuels. Our results indicate therefore that the IPCC's climate projections overestimate the upper-bound of climate change. Furthermore, this paper shows that different production pathways of fossil fuels use, and different climate models, are the two main reasons for the significant differences in current literature on the topic

    Water use for shale gas extraction in the Sichuan Basin, China

    Get PDF
    This study investigates the use of water for extracting shale gas in the Sichuan Basin of China. Both net water use and water intensity (i.e., water use per unit of gas produced) of shale wells are estimated by applying a process-based life cycle inventory (LCI) model. The results show that the net water use and water intensity are around 24500 m3/well and 1.9 m3 water/104m3 gas respectively, and that the fracturing and completion stage of shale gas extraction accounts for the largest share in net water use. A comparison shows that China's water use for shale gas extraction is generally higher than that of other countries. By considering the predicted annual drilling activities in the Sichuan Basin, we find that the annual water demand for shale gas development is likely to be negligible compared to total regional water supply. However, considering the water demand for shale gas extraction and the water demand from other sectors may make water availability a significant concern for China's shale gas development in the future

    An Explanation of Energy Return on Investment From an Entropy Perspective

    Get PDF
    Low-carbon energy transformation is a major trend in world energy development, and measures to mitigate carbon emissions can vary substantially in terms of the energy they require. A common method of evaluating energy use in energy resource exploitation is energy return on investment (EROI). One of the criticisms of EROI concerns uncertainty regarding the input and output factors for the calculation. To make the issue clear, we interpret EROI in terms of entropy, which is the most basic concept in physics. We consider an energy resource exploitation system to be a kind of dissipative structure and construct a basic entropy analysis framework for an energy resource exploitation system. We then derive the relationship between EROI and entropy change. The theory of EROI is consistent with the basic requirement for a dissipative structure, which is that the total entropy change must be negative. EROI is a method of using entropy theory to evaluate energy resource exploitation. It is inappropriate and unnecessary to quantify all factors as energy units as the input and output factors are multidimensional while energy is a one-dimensional standard. Future development of the EROI method should be guided by entropy theory. A series of EROI related indicators will increase its application and policy significance

    Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels

    No full text
    There is a strong correlation between net energy yield (NEY) and energy return on investment (EROI). Although a few studies have researched the EROI at the extraction level in China, none have calculated the EROI at the point of use (EROIPOU). EROIPOU includes the entire energy conversion chain from extraction to point of use. To more comprehensively measure changes in the EROIPOU for China’s conventional fossil fuels, a “bottom-up” model to calculate EROIPOU was improved by extending the conventional calculation boundary from the wellhead to the point of use. To predict trends in the EROIPOU of fossil fuels in China, a dynamic function of the EROI was then used to projections future EROIPOU in this study. Results of this paper show that the EROIPOU of both coal (range of value: 14:1–9.2:1), oil (range of value: 8:1–3.5:1) and natural gas (range of value: 6.5:1–3.5:1) display downward trends during the next 15 years. Based on the results, the trends in the EROIPOU of China’s conventional fossil fuels will rapidly decrease in the future indicating that it is more difficult to obtain NEY from China’s conventional fossil fuels

    China's oil reserve forecast and analysis based on peak oil models

    No full text
    In order to forecast future oil production it is necessary to know the size of the reserves and use models. In this article, we use the typical Peak Oil models, the Hu-Chen-Zhang model usually called HCZ model and the Hubbert model, which have been used commonly for forecasting in China and the world, to forecast China's oil Ultimate Recovery (URR). The former appears to give more realistic results based on an URR for China of 15.64 billion tons. The study leads to some suggestions for new policies to meet the unfolding energy situation.Ultimate Recovery Peak oil models Energy policy

    Forecast of oil reserves and production in Daqing oilfield of China. Energy 2010

    No full text
    a b s t r a c t As China' largest oilfield, Daqing is of great importance to China, this paper analyzes the status of the Daqing oilfield and forecasts its ultimate recoverable reserves by use of the URR model. The forecast results are presented for three scenarios which show that the ultimate recoverable reserves in Daqing oilfield are 3574.0 million tons in the optimistic scenario, 3169.3 million in the base case scenario and 3033.3 million in the pessimistic scenario, respectively. A system dynamics model is established and the quantitative relationships between variables in the model are determined. Total oil production, remaining recoverable reserves, annual newly discovered reserves, and the degree of reserves recovery before 2060 are simulated under the three scenarios by use of the system dynamics model. The forecast results show that the future oil production in Daqing oilfield will continue declining, under the base case scenario, from 41.6 million tons in 2007 to 8.0 million tons in 2060. For Chinese policy-makers, it is worth paying attention to the problem of whether oil production in new oilfields can effectively make up for the decline in production of the large, old oilfields

    Development of oil formation theories and their importance for peak oil

    No full text
    This paper reviews the historical development of both biogenic and non-biogenic petroleum formation. It also examines the recent claim that the so-called “abiotic” oil formation theory undermines the concept of “peak oil,” i.e. the notion that world oil production is destined to reach a maximum that will be followed by an irreversible decline. We show that peak oil is first and foremost a matter of production flows. Consequently, the mechanism of oil formation does not strongly affect depletion. We would need to revise the theory beyond peak oil only for the extreme — and unlikely — hypothesis of abiotic petroleum formation

    Chinese coal supply and future production outlooks

    No full text
    China's energy supply is dominated by coal, making projections of future coal production in China important. Recent forecasts suggest that Chinese coal production may reach a peak in 2010–2039 but with widely differing peak production levels. The estimated URR (ultimately recoverable resources) influence these projections significantly, however, widely different URR-values were used due to poor understanding of the various Chinese coal classification schemes. To mitigate these shortcomings, a comprehensive investigation of this system and an analysis of the historical evaluation of resources and reporting issues are performed. A more plausible URR is derived, which indicates that many analysts underestimate volumes available for exploitation. Projections based on the updated URR using a modified curve-fitting model indicate that Chinese coal production could peak as early as 2024 at a maximum annual production of 4.1 Gt. By considering other potential constraints, it can be concluded that peak coal in China appears inevitable and immediate. This event can be expected to have significant impact on the Chinese economy, energy strategies and GHG (greenhouse gas) emissions reduction strategies

    Is peakoilism coming?

    No full text
    Peak oil research and the Association for the Study of Peak Oil and Gas (ASPO) have contributed a great deal to improve people's recognition of peak oil. Although peak oil is becoming a part of public recognition, it is still hard to say whether peak oil discussion will develop into a theory such as "peakoilism". On one hand, there are still some difficult problems in peak oil research. On the other hand, the peakoilers have the potential for scientific research and have their allies: the climate change researchers and the new energy advocates. Oil is a limited, non-renewable resource, and an oil peak is inevitable. Peak oil theory is a kind of development theory rather than a crisis theory, which promotes reasonable utilization of the limited oil resources, promotes conservation, and encourages the development of renewable energy.Peak oil Oil production Resource depletion
    corecore