55 research outputs found

    TextDC: Exploring Multidimensional Text Detection via a New Benchmark and Solution

    No full text
    Text detection has been significantly boosted by the development of deep neural networks but most existing methods focus on a single kind of text instance (i.e., overlaid text, layered text, scene text). In this paper, we expand the text detection task from a single dimension to multiple dimensions, thus providing multi-type text descriptions for the scene and content analysis of videos. Specifically, we establish a new task to detect and classify text instances simultaneously, termed TextDC. As far as we know, existing benchmarks cannot meet the requirements of the proposed task. To this end, we collect a large-scale text detection and classification dataset, named Text3C, which is annotated using multilingual labels, location information, and text categories. Together with the collected dataset, we introduce a multi-stage and strict evaluation metric, which penalizes detection approaches for missing text instances, false positive detection, inaccurate location boxes, and error text categories, developing a new benchmark for the proposed TextDC task. In addition, we extend several state-of-the-art detectors by modifying the prediction head to solve the new task. Then, a generalized text detection and classification framework is designed and formulated. Extensive experiments using the updated methods are conducted on the established benchmark to verify the solvability of the proposed task, the challenges of the dataset, and the effectiveness of the solution

    COCM: Co-Occurrence-Based Consistency Matching in Domain-Adaptive Segmentation

    No full text
    This paper focuses on domain adaptation in a semantic segmentation task. Traditional methods regard the source domain and the target domain as a whole, and the image matching is determined by random seeds, leading to a low degree of consistency matching between domains and interfering with the reduction in the domain gap. Therefore, we designed a two-step, three-level cascaded domain consistency matching strategy—co-occurrence-based consistency matching (COCM)—in which the two steps are: Step 1, in which we design a matching strategy from the perspective of category existence and filter the sub-image set with the highest degree of matching from the image of the whole source domain, and Step 2, in which, from the perspective of spatial existence, we propose a method of measuring the PIOU score to quantitatively evaluate the spatial matching of co-occurring categories in the sub-image set and select the best-matching source image. The three levels mean that in order to improve the importance of low-frequency categories in the matching process, we divide the categories into three levels according to the frequency of co-occurrences between domains; these three levels are the head, middle, and tail levels, and priority is given to matching tail categories. The proposed COCM maximizes the category-level consistency between the domains and has been proven to be effective in reducing the domain gap while being lightweight. The experimental results on general datasets can be compared with those of state-of-the-art (SOTA) methods

    COCM: Co-Occurrence-Based Consistency Matching in Domain-Adaptive Segmentation

    Get PDF
    This paper focuses on domain adaptation in a semantic segmentation task. Traditional methods regard the source domain and the target domain as a whole, and the image matching is determined by random seeds, leading to a low degree of consistency matching between domains and interfering with the reduction in the domain gap. Therefore, we designed a two-step, three-level cascaded domain consistency matching strategy—co-occurrence-based consistency matching (COCM)—in which the two steps are: Step 1, in which we design a matching strategy from the perspective of category existence and filter the sub-image set with the highest degree of matching from the image of the whole source domain, and Step 2, in which, from the perspective of spatial existence, we propose a method of measuring the PIOU score to quantitatively evaluate the spatial matching of co-occurring categories in the sub-image set and select the best-matching source image. The three levels mean that in order to improve the importance of low-frequency categories in the matching process, we divide the categories into three levels according to the frequency of co-occurrences between domains; these three levels are the head, middle, and tail levels, and priority is given to matching tail categories. The proposed COCM maximizes the category-level consistency between the domains and has been proven to be effective in reducing the domain gap while being lightweight. The experimental results on general datasets can be compared with those of state-of-the-art (SOTA) methods

    Adsorption of Azo Dye Acid Red 73 onto Rice Wine Lees: Adsorption Kinetics and Isotherms

    No full text
    The adsorption properties of rice wine lees for acid red 73 in aqueous solution were studied in order to explore the recyclability of rice wine lees and to solve the pollution of dye-contaminated wastewater. Hence, the azo dye acid red 73 was selected as the model pollutant. Effects of parameters including pH, rice wine lees dosage, and initial concentration of acid red 73 on the adsorption activity were investigated to determine the optimal conditions for removal of acid red 73. The experimental results showed that acid red 73 removal by rice wine lees decreased with increasing pH and initial concentration of acid red 73 and increased with increasing rice wine lees dosage. The adsorption reaction was consistent with pseudo-first-order kinetic models, and the adsorption process was physisorption. The adsorption isotherm could be described well with the Freundlich equation, and the maximum adsorption capacity was 18.74 mg·g−1

    Decreased Functional Connectivity of Homotopic Brain Regions in Chronic Stroke Patients: A Resting State fMRI Study.

    No full text
    The recovery of motor functions is accompanied by brain reorganization, and identifying the inter-hemispheric interaction post stroke will conduce to more targeted treatments. However, the alterations of bi-hemispheric coordination pattern between homologous areas in the whole brain for chronic stroke patients were still unclear. The present study focuses on the functional connectivity (FC) of mirror regions of the whole brain to investigate the inter-hemispheric interaction using a new fMRI method named voxel-mirrored homotopic connectivity (VMHC). Thirty left subcortical chronic stroke patients with pure motor deficits and 37 well-matched healthy controls (HCs) underwent resting-state fMRI scans. We employed a VMHC analysis to determine the brain areas showed significant differences between groups in FC between homologous regions, and we explored the relationships between the mean VMHC of each survived area and clinical tests within patient group using Pearson correlation. In addition, the brain areas showed significant correlations between the mean VMHC and clinical tests were defined as the seed regions for whole brain FC analysis. Relative to HCs, patients group displayed lower VMHC in the precentral gyrus, postcentral gyrus, inferior frontal gyrus, middle temporal gyrus, calcarine gyrus, thalamus, cerebellum anterior lobe, and cerebellum posterior lobe (CPL). Moreover, the VMHC of CPL was positively correlated with the Fugl-Meyer Score of hand (FMA-H), while a negative correlation between illness duration and the VMHC of this region was also detected. Furthermore, we found that when compared with HCs, the right CPL exhibited reduced FC with the left precentral gyrus, inferior frontal gyrus, inferior parietal lobule, middle temporal gyrus, thalamus and hippocampus. Our results suggest that the functional coordination across hemispheres is impaired in chronic stroke patients, and increased VMHC of the CPL is significantly associated with higher FMA-H scores. These findings may be helpful in understanding the mechanism of hand deficit after stroke, and the CPL may serve as a target region for hand rehabilitation following stroke

    Genome-wide association study on coordination and agility in 461 Chinese Han males

    No full text
    Purpose: There is growing evidence that genetic factors can influence human athletic performance. In many sports performances, excellent coordination and agility are the keys to mastery. However, few studies have been devoted to identifying genetic influences on athletic performance. Methods: We generated a derived measure of coordination and agility from the data of hexagonal jumps and T-runs and conducted genome-wide association and meta-analysis studies focused on coordination and agility. Results: The phenotypic correlation and genetic covariance analysis indicated that hexagonal jumps and T-runs were possibly influenced by the same set of genetic factors (R = 0.27, genetic covariance = 0.59). Meta-analysis identified rs117047321 genome-wide significant association (N = 143, P < 10E-5) with coordination and agility, and this association was replicated in the replication group (N = 318, P < 0.05). The CG genotype samples of this single nucleotide polymorphism (SNP) required a longer average movement time than the CC genotype samples, and the CG genotype only exists in Asia, which may belong to the East Asia-specific variation. This SNP is located on MYO5B, which is highly expressed in tissues such as the brain, heart, and muscle, suggesting that this locus might be a genetic factor related to human energy metabolism. Conclusion: Our study indicated that genetic factors can affect the athletic performance of coordination and agility. These findings may provide valuable insights for using genetic factors to evaluate sports characteristics

    SNP rs3825214 in TBX5 is associated with lone atrial fibrillation in Chinese Han population.

    Get PDF
    BACKGROUND: A prolonged PR interval is a sign of increased risk of cardiac arrhythmia. Recent genome-wide association studies found that the single-nucleotide polymorphism (SNP) rs3825214 in T-box 5 (TBX5) was positively associated with PR interval, QRS duration, QT interval, and common arrhythmia disorders such as atrial fibrillation (AF) and advanced atrioventricular block. However, other independent replication studies are required to validate the result. This study assessed associations between rs3825214 and ECG parameters, AF, and ventricular tachycardia (VT) in a Chinese Han population. METHODOLOGY/PRINCIPAL FINDINGS: To assess the association between rs3825214 and AF and VT, we carried out case-control association studies with 692 AF patients (including 275 lone AF patients), 235 VT patients, and 856 controls. Genotyping was performed using a Rotor-Gene TM 6000 High Resolution Melt system. Statistical analyses of associations were adjusted for potential confounding factors. A moderate association was detected between rs3825214 and AF (P(adj) = 0.036, OR = 0.79) and a highly significant association was detected between the G allele of rs3825214 and lone AF (P(adj) = 0.001, OR = 0.65; genotypic P = 3.75×10⁻⁴ with a dominant model). We also found that rs3825214 showed a significant association with atrial-ventricular block (AVB; P = 0.028; P(adj) = 0.035, OR = 0.494). CONCLUSIONS: Our results indicate that rs3825214 conferred a significant risk of lone AF in this Chinese Han population

    Clinical significance of serum glucose to lymphocyte ratio as a prognostic marker in peritoneal dialysis patients

    No full text
    AbstractBackground The glucose-to-lymphocyte ratio (GLR), a glucose metabolism and systemic inflammatory response parameter, is associated with an adverse prognosis for various diseases. However, the association between serum GLR and prognosis in patients undergoing peritoneal dialysis (PD) is poorly understood.Methods In this multi-center cohort study, 3236 PD patients were consecutively enrolled between 1 January 2009 and 31 December 2018. Patients were divided into four groups according to the quartiles of baseline GLR levels (Q1: GLR ≤ 2.91, Q2:2.91 < GLR ≤ 3.91, Q3:3.91 < GLR < 5.59 and Q4: GLR ≥ 5.59). The primary endpoint was all-cause and cardiovascular disease (CVD) related mortality. The correlation between GLR and mortality was examined using Kaplan–Meier and multivariable Cox proportional analyses.Results During the follow-up period of 45.93 ± 29.01 months, 25.53% (826/3236) patients died, of whom 31% (254/826) were in Q4 (GLR ≥ 5.59). Multivariable analysis revealed that GLR was significantly associated with all-cause mortality (adjusted HR 1.02; CI 1.00 ∼ 1.04, p = .019) and CVD mortality (adjusted HR 1.02; CI 1.00 ∼ 1.04, p = .04). Compared with the Q1 (GLR ≤ 2.91), placement in Q4 was associated with an increased risk of all-cause mortality (adjusted HR: 1.26, 95% CI: 1.02 ∼ 1.56, p = .03) and CVD mortality (adjusted HR 1.76; CI 1.31 ∼ 2.38, p < .001). A nonlinear relationship was found between GLR and all-cause or CVD mortality in patients undergoing PD (p = .032).Conclusion A higher serum GLR level is an independent prognostic factor for all-cause and CVD mortality in patients undergoing PD, suggesting that more attention should be paid to GLR
    corecore