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Abstract: This paper focuses on domain adaptation in a semantic segmentation task. Traditional
methods regard the source domain and the target domain as a whole, and the image matching is
determined by random seeds, leading to a low degree of consistency matching between domains
and interfering with the reduction in the domain gap. Therefore, we designed a two-step, three-
level cascaded domain consistency matching strategy—co-occurrence-based consistency matching
(COCM)—in which the two steps are: Step 1, in which we design a matching strategy from the
perspective of category existence and filter the sub-image set with the highest degree of matching
from the image of the whole source domain, and Step 2, in which, from the perspective of spatial
existence, we propose a method of measuring the PIOU score to quantitatively evaluate the spatial
matching of co-occurring categories in the sub-image set and select the best-matching source image.
The three levels mean that in order to improve the importance of low-frequency categories in
the matching process, we divide the categories into three levels according to the frequency of co-
occurrences between domains; these three levels are the head, middle, and tail levels, and priority is
given to matching tail categories. The proposed COCM maximizes the category-level consistency
between the domains and has been proven to be effective in reducing the domain gap while being
lightweight. The experimental results on general datasets can be compared with those of state-of-the-
art (SOTA) methods.

Keywords: computer vision; semantic segmentation; domain adaptation; image matching

MSC: 68T05

1. Introduction

Domain-adaptive semantic segmentation (DASS) has received extensive attention. It
can greatly alleviate the high cost of manual annotation in intensive prediction. Researchers
have made significant progress in exploring methods for adaptation from a labeled source
domain to an unlabeled target domain.

Our work pays attention to the DASS method, which is based on adversarial training.
Previous methods used vanilla generative adversarial networks (GANs) [1], patch GANs [2],
and pixel-level GANs [3]. Here, we focus on the pixel-level GAN method. As shown in
Figure 1a, the guidance for each pixel comes from two parts: the adversarial loss and
task loss. The former pursues domain-invariant space, while the latter maintains the
segmentation performance. The intuitive idea is that if these three pixels in the same
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position belong to the same category, they will produce more sufficient guidance. This kind
of matching is called semantic-level consistency matching. The traditional DASS method
regards the source domain and the target domain as a whole set, and the image matching
is determined by randomly specified seeds. This matching method does not consider
the semantic-level consistency between domains, which leads to a negative transfer in
domain adaptation.

Figure 1. (a) A group of images during training. From left to right, they are the target image, source
image, and pixel-level ground truth. (b) The imbalanced distribution of the co-occurrence frequency
in different categories.

Therefore, we propose a co-occurrence-based consistency matching (COCM) method
for the maximization of the inter-domain semantic consistency. COCM is a two-step strategy
for matching from coarse to fine, and it selects the optimal source domain corresponding to
an image for the target-domain image by using two steps that assess the “more common
categories” (existence) and if elements are “in the same position” (space). At the same time,
we fully consider the imbalanced distribution of the co-occurrence frequencies of different
categories, as shown in Figure 1b. The categories are divided into three levels according
to the frequency of the inter-domain co-occurrence of categories—head, middle, and tail,
corresponding to the red, green, and blue areas in the figure. The order of priority is in the
reverse order of frequency to ensure the contribution of low-frequency categories to the
consistency matching.

Previous work related to content-consistent matching (CCM) [4] matched the source-
domain image by clustering target images. However, this work was focused more on
global matching and lacked consideration of inter-domain co-occurrence. Our method
pays attention to differential co-occurrence categories in the consistency matching and
adjusts for imbalanced distributions. As shown in Figure 2, the three columns are the target
domain image, the image matched by the COCM, and the image matched with the vanilla
method, respectively. The three lines show the matching at different levels. We can see that
the images in the second column basically met the matching target of the same location
that corresponded to the same category, while the semantic consistency matching in the
third column was not satisfactory.

Our contributions are:

• We propose a new co-occurrence based consistent matching (COCM) method. To
the best of our knowledge, this is the first effort to explore image matching from the
perspective of inter domain category co-occurrence frequency.

• The COCM is composed of two-step cascade matching and three-level priority strategy.
Two-step refers to matching the optimal source image for the target domain image
from the existence and spatial matching. Three-level refers to the priority adjustment
of category co-occurrence imbalance.

• We design a new measurement patch intersection over union (PIOU) to measure the
spatial similarity between domains.
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• Our method is lightweight and proved to be effective. The results on general datasets
can compare with SOTA methods.

Figure 2. Examples of co-occurrence-based consistency matching on three levels.

2. Related Work
2.1. Domain Adaptive Semantic Segmentation

Domain adaptive semantic segmentation (DASS) is one of the important applications
of domain adaptation. The main purpose of this task is to obtain the optimal segmenta-
tion performance for the unsupervised target domain. Some of previous methods used
adversarial training to maximize domain invariance from the feature space [1,3] or the label
space [5], some introduced style transfer to explore the adaptation of segmentation on the
basis of style consistency, and some used self-supervised learning to achieve domain adap-
tation by exploring more accurate pseudo labels. Ref. [6] proposes the contextual-relation
consistent domain adaptation (CrCDA), which explicitly learns and enforces prototype
local contextual-relations in the feature space of the labeled source domain and transfers
them to the unlabeled target domain by adversarial learning. CrCDA applies co-occurrence
frequency from the perspective of local contextual-relation, and our method applies co-
occurrence frequency from the perspective of image matching. Ref. [7] proposes the pixel
level cycle association (PLCA), which establishes pixel-level cycle association between
source and target pixel pairs, and, in contrast, strengthens the connection between them
to reduce the domain gap. We are inspired by cycle association and applied to class-level
consistency matching between domains.

2.2. Image Matching Cross Domain

Cross domain image matching refers to selecting the image closest to the target domain
from the source domain according to different standards. In feature distribution matching
(FDM) [8], feature distribution matching was proposed to match source domain images
from the perspective of color features. The work of [9] performs cross domain image
matching from the perspective of outlier detection. CCM [4] selects the positive images
in the source domain images. The selection strategy is to cluster the target domain and
randomly select 20% of the source images to score with the cluster center of the target
domain. Inspired by the above image matching methods, our method matches the entire
source domain dataset by two steps, and proposes a new spatial similarity evaluation
method, PIOU.

2.3. Class-Imbalance Learning

Category-imbalance refers to the situation that the number of training samples in
different categories varies greatly [10]. The current research has proposed several solutions,
such as re-sampling, cost-sensitive learning, or transfer learning. In DASS task, some studies
also pay attention to the imbalance distribution. Class-balanced self-training (CBST) [11]
adjusts the category imbalance in the process of generating pseudo labels. Our method
comprehensively considers the imbalance of the co-occurrence category inter domain and
conduct category rebalancing through three levels of priority.
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3. Methods
3.1. Preliminary

First, we define the symbols involved in COCM: source domain image Is and ground
truth Ys, target domain image It, feature extractor F, segmentation module atrous spatial
pyramid pooling (ASPP), domain discriminator D, wherein the segmentation network
is composed of F + ASPP. H, W, and C denote height, width, and category number,
respectively. Vanilla DASS algorithm based on adversarial training, as shown in Figure 3,
can be regarded as three steps in training:

1. The target domain image It is input into F to obtain segmentation header F(It) and
input F(It) into ASPP to output prediction P(It).

2. The source domain image Is is input into the segmentation network, and the segmen-
tation header F(Is) and the result P(Is) are output. For P(Is), the cross-entropy loss is
used to maintain the performance of the segmentation network. The calculation of
the cross-entropy loss is as follows:

Lseg = −
H

∑
h=1

W

∑
w=1

C

∑
c=1

yh,w,c
s logPh,w,c

xs . (1)

3. The segmentation header F(It)/F(Is) of the source domain and the target domain
is input to the domain discriminator D. The function of discriminator is to narrow
the distribution of source domain and target domain, and maximize the shared
information between domains. The discriminator uses adversarial loss as follows:

Ladv =−E[logD(F(Is))]−E[log(1−D(F(It)))]. (2)

Vanilla methods regard the source domain and the target domain as a whole set, and
the image matching is determined by specified random seed with dataloader module. Here
‘regard the source domain and the target domain as a whole’ means that when dealing with
domain gap, the entire source domain image set is considered as a uniform distribution of
categories, and each source domain image plays an equally important role in adaptation. In
model training, source domain and target domain images are randomly selected as input of
model. In COCM, the target domain still uses dataloader to set the order, while the source
domain image is matched according to the target image prediction.

Figure 3. Vanilla DASS training flow based on adversarial training. Step 1, 2, and 3 in the figure are
explained in detail in Section 3.1.
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3.2. Co-Occurrence Based Consistent Matching

We show the overall frame of COCM in Figure 4. We can see from (a) that compared
with the vanilla method in Figure 3, we added the COCM module to match the source
domain image. The process of domain adaptation training after matching is the same as
that of vanilla method. In (b), we show the existence matching and spatial matching, and
next we will explain it in detail.

Figure 4. Overall frame of co-occurrence based consistent matching (COCM). The left side is the
proposed training flow.Our proposed COCM follows step 1 in the vanilla DASS algorithm as step 2.
Therefore, steps 2 and 3 in vanilla DASS algorithm become steps 3 and 4. The right side shows the
details of COCM, and from top to bottom are the two steps of existence and spatial matching.

3.2.1. Existence Matching

Due to the domain gap, it cannot be guaranteed that each pair of matched images
contains the same category. Therefore, we first performed existence matching to screen out
the subset with the highest degree of co-occurrence.

For the target domain image, we obtain a one-hot vector Etgt indicating whether
the category exists according to the current prediction result P(It) as shown in Figure 4b.
The vector is in 1× C dimension. If the corresponding bit is 1, the category exists in the
image. If the bit is 0, the category does not exist. For the source domain, we obtain the
category existence information of all images according to the GroundTruth, and each image
corresponds to a heat vector. The entire dataset is pre-generated in the form of matrix Msrc.

For category level existence matching, we traverse the target domain existence vector
Etgt across the source domain matrix Msrc to find the candidate subset with the highest
matching degree. We design matching strategy with three-level priority. According to the
co-occurrence frequency distribution inter domain mentioned in Figure 1, the categories are
divided by threshold into three levels: head, middle and tail. In matching, if there is at least
one common category in the tail level, it is marked as tail level matching and the number
of common categories is counted. If the tail level does not match at all, then retrieve and
find whether the middle level has at least one common category and count them. If the
middle level does not match at all as well, retrieve and find whether the head level has at
least one common category and count them.

The existential matching outputs the candidate image set with the largest number
of common categories in marked matching level. Existence matching performs coarse
preliminary screening from the entire target domain data set, and the following spatial
matching performs fine selection from the perspective of location.

3.2.2. Spatial Matching

Spatial matching aims to achieve the goal of the same location and the same category
to the maximum extent. Different from the traditional pixel-level image matching, cross
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domain image matching looks for the image with the same overall layout and the same
position of low-frequency category. Therefore, ‘the same position’ in COCM refers to one
patch. Inspired by the classical measurement method MIOU, we propose the method of
PIOU to quantitatively measure the spatial similarity of common categories. The scoring
method is as follows:

socre =
co−category

∑
i

wtype · PIOUi, (3)

where i refers to the category of co-occurrence, PIOUi means Patch Intersection-over-
Union of each category, and wtype is used as a hyper parameter to adjust the importance of
low-frequency category in matching.

We partitioned the image into patches. For the target image, we divide it into H/N ×
W/N patches according to the current prediction result P(It), number each position from
0 ∼ H/N ×W/N − 1, and count the patch number covering each category. Where N is
a hyper parameter to adjust the size of the patch. For the source images, we divide the
patches in advance according to the ground truth and record the category space information
of all images.

For all co-occurrence categories, we calculate and sum the intersection and union ratio
of the covering patch blocks on the target domain and the source domain. To highlight the
contribution of low-frequency categories to the total score, we adjust it by different weights.
Finally, we output the image with the highest score as the corresponding source domain
image of the current target domain image. To avoid repeatedly selecting the same source
domain image. We recorded the selected images of each target domain image and excluded
them from the candidate list before each match. The calculation of PIOU is as follows:

PIOU =
PatchIntersection

PatchUnion
. (4)

To better present the calculation of PIOU, we chose a set of representative images
in Figure 5. By existence matching, we know the co-occurrence categories are rider and
motorcycle. Here we calculate the scores of rider. The upper left is the target domain
image, the lower left is the image to be scored in the source domain, the upper middle is
the prediction result of the target domain after patch division with N = 6, and the lower
middle is the ground truth of the source domain image after patch division. We use black
lines to mark the patch division in the middle images. The area marked by white lines is
the area covered by the rider in the prediction results and the ground truth. The upper
right blue line represents the intersection area, and the lower right yellow line represents
the union area. Here we use the number of blocks to measure the spatial matching of rider,
so PIOUrider = 6/8(0.75).

Figure 5. Visualization of PIOU calculation.
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We choose the patch segmented image for spatial matching for the following reason:
Firstly, the computational cost of pixel level position matching is too high, which seriously
affects the selection efficiency. Second, the prediction result of the target domain is not
completely accurate. Patch level matching can produce a certain fault tolerance for wrong
pixel matching. Third. Patch matching is a relaxation strategy. As long as the prediction
results indicate the approximate positions of the co-occurrence categories, the COCM can
match their corresponding images in the source domain.

3.2.3. Training Procedure of COCM

The training procedure of our proposed method is summarized in Algorithm 1.

Algorithm 1: Training procedure of COCM.
Input: The source image set Is and ground truth Ys; The target image set It; The source-
domain parameter θS; The iteration number T; Threshold of head/middle/tail.
Output: Adapted target-domain segmentation network parameter θT

1: Train source domain supervised and share θS with θT .
2: Use Ys to calculate the existence information Mexist and spatial information Mspace

of source image set.
3: Initialize category co-occurrence frequency with source domain category frequency.
4: Generate the target domain image iterator TIter with random seed.
5: for iteration 1 to T do
6: TIter obtains the current batch of It and input the segmentation network F + ASPP

to obtain P(It).
7: Existence matching: calculate category existence vector V(It) of P(It), and

traverse MExist to find the subset ISSUB with the most matching digits according
to the priority of tail > middle > head.

8: Spatial matching: calculate category location tuple T(It) and traverse ISSUB .
Find image set ISMAX with the highest score according to Formula (3) and Mspace
and randomly select one of them as the corresponding image Is.

9: Is input the segmentation network F + ASPP to obtain P(Is), and calculate
segmentation loss in Formula (1).

10: It and Is input the discriminator D, and calculate the adversarial loss in Formula (2).
11: By alternately training F + ASPP and D, F + ASPP is encouraged to generate

domain-invariant features.
12: Update the frequency of inter domain category co-occurrence after a fixed iteration.
13: end for
14: return θT

4. Experiments
4.1. Datasets

Following the general data set of DASS, we choose the Cityscapes [12] as target
domain. The data set contains 2975 training images and 500 validation images. Images
were collected from more than 50 cities including Aachen, Bochum, and Bremen, reaching
1024 × 2048 resolution. The image set has 30 predefined categories, 19 of which are used
in the semantic segmentation task.

For source set we use GTA5 [13] and SYNTHIA [14] datasets. GTA5 dataset obtains
street view images from the classic commercial game GTAV, and generates a large number
of high-resolution annotation images by computer graphics technology. GTA5 contains
24,966 images with a resolution of 1914 × 1052. The image set predefines 19 categories
to match Cityscapes. SYNTHIA is an urban street view data set generated by the Utility
development tool, with a resolution of 1280 × 960. Here we use the subset SYNTHIA-
RAND-CITYSCAPES because its annotation space corresponds to cityscapes. The total
number of images reached 9400.
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4.2. Implementation Details

The backbone of the segmentation network adopts the ResNet-101 [15] model based on
DeepLab-V2 [16] structure. We use the segmentation model pre-trained on ImageNet [17]
in the initial state. For the segmentation network, our structure includes five convolution
layers, with a convolution core of 4, the number of channels of {64, 128, 256, 512, 1}, a step
size of 2, which is similar to the structure of AdaptSegNet [5]. Following the training setting
of AdaptSegNet [5], the optimizer of the feature extractor uses SGD [18], the momentum
value is 0.9, the weight decay value is 10 ×10−4, the initial learning rate is 2.5 ×10−4, and
the poly learning rate policy is used for attenuation. For the discriminator, our structure
consists of three convolution layers, with a convolution kernel of 3, the number of channels
of {256, 128, 2C} (C refers to the number of categories) which is similar to the structure
of [3], and the step size of 1. The optimizer of discriminator uses Adam [19], where β1 = 0.9,
β2 = 0.99, the weight decay value is set to 10 ×10−4, the initial learning rate is 2.5 ×10−4,
and the poly learning rate policy is used for attenuation.

We set the batch size to 6 in GTA5→ Cityscapes and 4 in SYNTHIA→ Cityscapes,
respectively. The corp size in the target domain is set to 1024 × 512, in the source domain
are set to 1280× 760. Hyperparameter λadv set to 0.01. The thresholds of {head, middle, tail}
were set to {0.9, 0.3} in GTA5 → Cityscapes and {0.9, 0.5} in SYNTHIA → Cityscapes,
respectively. We have a supervised training source domain in advance and serve as the
initialization of domain adaptation and update the frequency of inter domain category
co-occurrence every 2000 iteration. To further improve the performance, we used self-
distillation [20] with multi-scale in testing stage. Our experiment is implemented in the
Pytorch library on a GTX 3090 with 24 GB memory.

For the evaluation metrics, we use the commonly used evaluation metrics in DASS:
Mean Intersection-over-Union(MIOU) [21]. Where Intersection-over-Union (IOU) evaluates
the accuracy of the corresponding class, and MIOU calculates the average value of IOU.

4.3. Quantitative Comparison Studies

We compare the excellent work based on adversarial training: AdaptSegNet [5],
CLAN [1], CAG-UDA [22], FADA [3], PAM [23], based on inter domain consistency:
CCM [4], CrCDA [6], PLCA [7]. We listed the performance of source only and full supervi-
sion (Oracle) for reference.

4.3.1. From GTA5 Adapt to Cityscapes

In Table 1, ,we can see that the performance of our method can reach 51.1% MIoU on the
validation set and 52.6% MIoU on the test set, of which eight categories are optimal. Those
categories with high-frequency co-occurrence, such as road, building, vegetation, terrain,
sky, person, and car have achieved results close to oracle, which proves the effectiveness
of our method. Meanwhile, low-frequency co-occurrence categories, such as rider and
motor, have also made significant improvements. We also observed that adaptation in
some categories with low-frequency co-occurrence, such as traffic sign or train, was not
satisfactory. We found that the feature similarity between these categories is very low,
which is difficult to distinguish by human eyes. Even the bus in GTA5 dataset looks more
similar to the train in Cityscapes dataset. We consider that image semantic matching
cannot improve the performance of feature dissimilar categories and unseen categories
cross domain, but can significantly improve the performance of similar features. This is
also the disadvantage of consistent image matching between domains.
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Table 1. Quantitative comparison on GTA5→ cityscapes task.

Method MIoU Road Side. Buil. Wall Fence Pole Tlight Tsign Vege. Terr. Sky Person Rider Car Truck Bus Train Motor Bike

Source only 36.2 63.0 14.5 68.7 23.0 17.4 21.6 34.4 11.0 82.5 22.0 76.0 55.0 32.0 58.7 24.6 29.3 16.3 26.9 11.3

AdaptSegNet 42.4 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1
PLCA 47.7 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8
CrCDA 48.6 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7
CCM 49.9 91.9 44.7 82.6 29.4 19.4 30.2 37.4 28.9 82.1 44.8 84.9 61.8 31.6 83.3 23.9 42.2 0.9 28.6 29.5
FADA 50.1 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1
CAG-
UDA(val) 50.2 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2

COCM(val) 51.1 93.8 54.5 86.4 41.6 28.0 32.4 42.1 29.5 86.5 37.3 88.1 63.8 35.9 87.7 38.6 50.2 18.0 28.7 27.8
CAG-
UDA(test) 51.7 93.2 57.0 85.6 35.7 25.1 37.5 30.8 45.3 87.1 50.1 89.4 62.7 40.8 87.8 18.0 32.4 34.5 34.4 35.4

PAM(test) 52.0 92.8 47.5 86.0 36.3 15.4 29.9 41.0 21.4 86.8 51.0 87.5 68.1 45.0 88.6 30.3 41.3 41.1 44.7 33.6
COCM(test) 52.6 94.5 54.2 86.8 36.1 21.4 31.9 42.4 28.6 88.1 51.1 91.5 69.6 45.0 89.9 33.1 39.8 27.7 40.3 27.9

Oracle 66.8 96.7 75.0 88.5 51.0 46.7 39.0 47.4 58.6 88.3 53.0 91.6 67.4 46.9 90.7 68.6 76.1 67.9 51.2 63.9
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4.3.2. From SYNTHIA Adapt to Cityscapes

Table 2 shows the quantitative comparison on SYNTHIA → cityscapes task. Our
proposed method can achieve an accuracy of 52.7% MIoU in the validation set, in which
the road category is optimal and the performance of high-frequency categories such as
sidewalk, traffic sign, sky, car, and motor ranked second. This is basically in line with our
expectations. The overall adaptation performance of SYNTHIA data set is not as good as
that of GTA5. We believe that it is due to the relatively low degree of realism of image set.

Table 2. Quantitative comparison on SYNTHIA→ cityscapes task.

Method MIoU Road Side. Buil. Tlight Tsign Vege. Sky Person Rider Car Bus Motor Bike

Source only 32.0 52.5 21.5 68.8 10.7 11.4 75.7 73.9 49.3 4.9 73.2 30.0 4.2 7.7

AdaptSegNet 46.7 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3
CLAN 47.8 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7
CrCDA 50.0 86.2 44.9 79.5 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1
PAM 52.4 84.3 39.3 82.8 6.9 14.9 85.4 85.5 58.4 27.9 84.1 49.3 27.1 35.0
FADA 52.5 84.5 40.1 83.1 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8
CCM 52.6 79.6 36.4 80.6 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0
CAG-UDA 52.6 84.8 41.7 85.5 13.7 23.0 86.5 78.1 66.3 28.1 81.8 21.8 22.9 49.0
COCM 52.7 87.6 43.3 82.9 5.9 25.2 85.1 85.7 54.9 21.7 84.1 39.6 28.8 40.1

Oracle 72.5 96.7 75.0 88.5 47.4 58.6 88.3 91.6 67.4 46.9 90.7 76.1 51.2 63.9

4.4. Qualitative Comparison Studies
4.4.1. Overall Segmentation Performance

Figure 6 shows quantitative adaptation results on GTA 5→ cityscapes task. Here
we selected three representative images to cover different categories. For each column,
we show target image, source only result, adapted result with COCM, and ground truth
image from left to right, respectively. For each row, we aim to show the domain adaptation
visualization of categories of bus, bicycle, sidewalk, and traffic light. The first row shows
the optimization effect of bus category. Our method can cover a large area of bus, although
there is still some confusion with train category. It can be seen from the second row that the
bicycle is separated after adaptation, although it still overlaps the car to a certain extent.
The performance of traffic lights in the third row has been significantly improved, and
even the outline is clear. In addition, we can see from the three rows that the segmentation
of road and sidewalk is smoother and more coherent. The above is consistent with our
previous analysis.

Figure 6. (Best viewed in color.) Qualitative adaptation results from GTA5→ cityscapes task.
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4.4.2. Image Matching Visualization

In Figure 7, we show an image of the target domain and the corresponding image of
the source domain selected for five consecutive times. In the first row, the target domain
image contains the tail level category rider, which appears in the corresponding positions
of the following five graphs. The second row shows the image matching of car category,
which basically realizes the goal of same category in same location, but there is a confused
matching in the third image matching the truck in the corresponding location. The third
row shows the matching of the bus category. We can see that the bus appears in the
corresponding position of the first, second, fourth, and fifth source images, and the bus
appears on the left of the image in the third. The overall layout structure of the above
images, including road, building, and sky, is roughly similar. The tail category basically
appears in the corresponding position, which is in line with our expectation.

Figure 7. Target domain image and the five corresponding images matching by COCM.

4.4.3. Matching Examples

To further illustrate the advantages and disadvantages of the COCM method, we
selected a group of positive matching examples and negative matching examples for
visualization. Positive examples can be seen in Figure 8a, the prediction results (upper
right of each group of figures) can indicate their approximate positions, and the COCM can
match the images of their source domain counterparts. This is in line with our expectations.

Figure 8. Positive matching examples and negative matching examples.

Figure 8b shows negative examples. From left to right, is the unseen category, the
feature dissimilar category, and false prediction. We can see that the coach in the left part is
an unseen category for the source domain, and the images in the source domain are not able
to provide guidance. In the middle part, train represent categories with dissimilar features
with source domain. The train in the GTA5 domain is dissimilar with the train in cityscapes,
but is similar to the bus in cityscapes. Therefore, the prediction result is not insufficient to
guide the COCM to match the appropriate source domain image. The right part shows the
situation of prediction error on car. Since large-area roads are incorrectly predicted to be car,

(a) Positive examples. From left to right are matching examples of rider and bicycle, car, bus and traffic sign. 

(b) Negative examples. From left to right are matching examples of unseen category, feature diss imilar category and fal se predictions. 
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COCM is guided to match the source domain image containing large-area of car. Among
these three negative examples, only the false prediction can be corrected with the increase
in training epoch. This is consistent with the performance in quantitative experiments.
For unseen category, feature dissimilar category, we need to further adapt by means of
multi-source domain and few-shot learning. This is the weakness of COCM and our future
research direction.

4.5. Ablation and Parameter Studies

We performed ablation experiments on GTA5→ cityscapes adaptative semantic seg-
mentation task to verify each components, respectively, and ablation results are shown in
Table 3. Here, PIOU is divided into EM and SM, SP denotes source domain pre-training,
EM means existence matching SM represents spatial matching, and SD represents self-
distillation strategy. We can see that only EM has achieved an improvement of 10.1%
MIOU and only SM has achieved an improvement of 8.3% MIOU. EM + LM can achieve an
improvement of 11.8% MIOU, and further combined with SD can achieve 14.9% MIOU,
which verifies the effectiveness of our method.

Table 3. Ablation study on GTA5→ cityscapes task.

SP EM SM SD MIoU (%)

X 36.2
X X 46.3
X X 44.5
X X X 48.0
X X X X 51.1

To study the impact of patch partition size on COCM performance, we tested different
patch sizes. It can be seen from Table 4, the smaller N is, the larger the corresponding patch
size, and the smaller the number of patches of a single image. We observe that the larger N
is, the smaller the proportion of selected images in the source domain is. When N = 6, the
performance reaches the optimal.

Table 4. Parameter study of patch partition on GTA5→ cityscapes adaptative semantic segmenta-
tion task.

N Path Size Count Source Portion (%) MIoU (%)

4 128 × 128 32 51.2 46.6
5 103 × 103 50 50.9 46.9
6 86 × 86 72 50.7 48.0
7 74 × 74 98 49.8 47.4

Further, we discuss the weight parameter wtype, which represents the contribution of
non-head categories in PIOU score. As shown in Figure 9, with the increase in non-head
category contribution, the adaptive performance is improved and reach optimal when wtype
is 3. Following the work of FADA, we studied the effect of parameter T, which represents
the degree of smoothness of the distribution of the prediction results over the categories.
As can be seen from right Figure 9, it reaches the optimum when T is 1.6.

Moreover, we counted the changes in the co-occurrence frequency of category existence
before and after the use of COCM on the GTA5→ cityscapes task. In Figure 10, we can see
that our method has significantly improved in almost the tail category. This is consistent
with our previous analysis and proves the effectiveness of our method.
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Figure 9. Parameter study on wtype and T. Here wtype = 1 means equally important, and 2, 3, and 4
indicate different degrees of importance.

Figure 10. Category co-occurrence comparison. The blue line represents the vanilla method and the
yellow line represents the COCM method.

5. Conclusions

Our method focuses on the category level consistent matching of inter domain images,
and designs a three-level two-step cascade matching strategy COCM to select images that
meet the same location and category to the maximum extent. In this process, we deal with
co-occurrence categories in an imbalance way, and propose a measurement method of
PIOU in spatial matching. Our method effectively improves the class level co-occurrence
between domains. Experiments prove that we reduce the domain gap on most semantic
categories. At the same time, we also analyze the disadvantage of our method. The effect
on unseen categories and feature dissimilar categories is not satisfactory. Therefore, in
the future work, we can further improve by means of multi-source domain and few-shot
learning. The multi-source domain method can compensate the unseen categories in a
single source domain and improve the guidance from the source. The few-shot learning
can correct the feature dissimilar categories in the source domain and adjust the deviation
generated by the model.
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