57 research outputs found

    Cellulose-Based Thermoplastics and Elastomers via Controlled Radical Polymerization

    Get PDF
    This chapter is concerned with the recent progress in cellulose-based thermoplastic plastics and elastomers via homogeneous controlled radical polymerizations (CRPs), including atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP). The first section is a brief introduction of cellulose and cellulose graft copolymers. The second section is recent developments in cellulose graft copolymers synthesized by CRPs. The third part is a perspective on design and applications of novel cellulose-based materials. The combination of cellulose and CRPs can provide new opportunities for sustainable materials ranging from thermoplastics to elastomers, and these fascinating materials can find a pyramid of applications in our daily life in the near future

    Fabrication of Au/Pd alloy nanoparticle/Pichia pastoris composites: a microorganism-mediated approach

    Get PDF
    Fundamental Research Funds for Central Universities [2010121051]; NSFC projects [21106117, 21036004]Synthesis of metal nanoparticles (NPs) is in the limelight in modern nanotechnology. In this present study, bimetallic Au/Pd NP/Pichia pastoris composites were successfully fabricated through a one-pot microbial reduction of aqueous HAuCl4 and PdCl2 in the presence of H-2 as an electron donor. Interestingly, flower-like alloy Au/Pd NP/Pichia pastoris composites were obtained under the following conditions, NaCl concentration 0.9% (w/v), molar ratio of Au/Pd (1 : 2) and the time for pre-adsorption of Au(III) and Pd(II) ions 15 min, through fresh yeast reduction. The mapping results from scanning transmission electron microscopy (STEM) with a high-angle annular dark field detector confirmed that the Au/Pd NPs on the surface of the yeast were indeed alloy. Furthermore, the energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) measurements showed that the composition of the bimetallic NPs were consistent with the initial molar ratio of the precursors

    The Study of Sewage Sludge Thermo-Drying Efficiency

    Get PDF
    AbstractWith the population exploding and improvement of urbanization, the sewage sludge production increases rapidly with the increasing of sewage. However, high water content has been a big problem for sewage sludge treatment and disposal. Thermo-heating is one of the mature methods to reduce the water content in sewage sludge, but the promotion of thermo drying is very restricted by its high cost because of abundant consumption of energy and its expensive equipments. In order to save energy and reduce investment for equipments, we studied the low-temperature thermo-drying efficiency by varying the temperature from 100°C to 200°C, and changing the shape of the sewage sludge sample, We tried three shapes (cake, cylindrical and spherical) and three temperature (at 150°C,175°C and 200°C). It is found that cake sludge has the highest drying efficiency and spherical sludge is the lowest in each condition. At 200°C the drying efficiency could get the highest point

    A study on the accuracy of a new fluorescent detection method for vaginal fungi

    No full text
    Abstract Background To investigate the positive rate and clinical applicability of liquid—based fungal method for detecting of vaginal fungi. We collect the secretions from the posterior vaginal fornix and the vaginal wall of 198 patients with clinically suspected fungi vaginitis patients for study. Methods The vaginal fungi of vaginal discharge were detected by fluorescence method, i.e., by liquid—based thin-layer fungi fluorescence morphology staining detection kit (liquid—based fungal method), saline smear method and fungal culture method. Results The positive rate of liquid-based fungal method, saline smear method was 50%, 25.75% respectively. The positive rate of liquid-based fungal method were 50%. The true positive rate of liquid-based fungal method (87.85%) was higher than that of saline smear method (45.79%, P < 0.001), which was easy to miss diagnosis. Moreover, the Kappa (K) of liquid-based fungal method was 0.81, and P < 0.01, which was statistically significant, indicating that the consistency of the two detection methods is good. Of the eight common symptoms of fungal vaginitis, the positive symptom coincidence rate of liquid-based fungal method was consistent with that of fungal culture method. It was also easier to see fungi under a microscope than with saline smear method. Conclusion The liquid-based fungal method has a high positive coincidence rate and accuracy in the detection of vaginal fungi, and it is convenient to operate and implement steps. Therefore, it may be applied in clinical practice. Or a combination of several detection methods can be used

    Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure

    No full text
    The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries

    Altered gut microbiota and microbial biomarkers associated with chronic kidney disease

    No full text
    Abstract The present study aimed to determine the differences in gut microbiota between patients with chronic kidney disease (CKD) and healthy controls (HC) and search for better microbial biomarkers associated with CKD. The 16S rRNA gene sequencing approach was used to investigate the differences in gut microbiota between the CKD and HC groups. The study found that 12 phylotypes were overrepresented in the CKD group and 19 in the HC group at the genus level. Furthermore, genera Lachnospira and Ruminococcus_gnavus performed the best in differentiating between HC and CKD populations. In addition, this novel study found that the genera Holdemanella, Megamonas, Prevotella 2, Dielma, and Scardovia were associated with the progression of CKD and hemodialysis. In conclusion, the composition of gut microbiota was different in CKD populations compared with healthy populations, and Lachnospira and R._gnavus were better microbial biomarkers. In addition, five phylotypes, including Holdemanella, Megamonas, Prevotella2, Dielma, and Scardovia, served as an indicator of the progression of CKD and hemodialysis. However, large‐scale prospective studies should be performed to identify the reliability of the set of these phylotypes as biomarkers

    Enhancement of Cell Adhesion by Anaplasma phagocytophilum Nucleolin-Interacting Protein AFAP

    No full text
    Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular Gram-negative bacterium. During infection, A. phagocytophilum enhances the adhesion of neutrophils to the infected endothelial cells. However, the bacterial factors contributing to this phenomenon remain unknown. In this study, we characterized a type IV secretion system substrate of A. phagocytophilum, AFAP (an actin filament-associated Anaplasma phagocytophilum protein) and found that it dynamically changed its pattern and subcellular location in cells and enhanced cell adhesion. Tandem affinity purification combined with mass spectrometry identified host nucleolin as an AFAP-interacting protein. Further study showed the disruption of nucleolin by RNA interference, and the treatment of a nucleolin-binding DNA aptamer AS1411 attenuated AFAP-mediated cell adhesion, indicating that AFAP enhanced cell adhesion in a nucleolin-dependent manner. The characterization of cell adhesion-enhancing AFAP and the identification of host nucleolin as its interaction partner may help understand the mechanism underlying A. phagocytophilum-promoting cell adhesion, facilitating the elucidation of HGA pathogenesis
    corecore