640 research outputs found
Temperature dependence of the energy dissipation in dynamic force microscopy
The dissipation of energy in dynamic force microscopy is usually described in
terms of an adhesion hysteresis mechanism. This mechanism should become less
efficient with increasing temperature. To verify this prediction we have
measured topography and dissipation data with dynamic force microscopy in the
temperature range from 100 K up to 300 K. We used
3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both
materials exhibiting a strong dissipation signal at large frequency shifts. At
room temperature, the energy dissipated into the sample (or tip) is 1.9
eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good
agreement with an adhesion hysteresis mechanism. The energy dissipation over
the PTCDA surface decreases with increasing temperature yielding a negative
temperature coefficient. For the KBr substrate, we find the opposite behaviour:
an increase of dissipated energy with increasing temperature. While the
negative temperature coefficient in case of PTCDA agrees rather well with the
adhesion hysteresis model, the positive slope found for KBr points to a
hitherto unknown dissipation mechanism
Supercooling across first-order phase transitions in vortex matter
Hysteresis in cycling through first-order phase transitions in vortex matter,
akin to the well-studied phenomenon of supercooling of water, has been
discussed in literature. Hysteresis can be seen while varying either
temperature T or magnetic field H (and thus the density of vortices). Our
recent work on phase transitions with two control variables shows that the
observable region of metastability of the supercooled phase would depend on the
path followed in H-T space, and will be larger when T is lowered at constant H
compared to the case when H is lowered at constant T. We discuss the effect of
isothermal field variations on metastable supercooled states produced by
field-cooling. This path dependence is not a priori applicable to metastability
caused by reduced diffusivity or hindered kinetics.Comment: Tex, 8 pages, 3 Postscripts figures. Submitted to Pramana - J.
Physic
Critical Fluctuations and Disorder at the Vortex Liquid to Crystal Transition in Type-II Superconductors
We present a functional renormalization group (FRG) analysis of a
Landau-Ginzburg model of type-II superconductors (generalized to complex
fields) in a magnetic field, both for a pure system, and in the presence of
quenched random impurities. Our analysis is based on a previous FRG treatment
of the pure case [E.Br\'ezin et. al., Phys. Rev. B, {\bf 31}, 7124 (1985)]
which is an expansion in . If the coupling functions are
restricted to the space of functions with non-zero support only at reciprocal
lattice vectors corresponding to the Abrikosov lattice, we find a stable FRG
fixed point in the presence of disorder for , identical to that of the
disordered model in dimensions. The pure system has a stable fixed
point only for and so the physical case () is likely to have a
first order transition. We speculate that the recent experimental findings that
disorder removes the apparent first order transition are consistent with these
calculations.Comment: 4 pages, no figures, typeset using revtex (v3.0
Simulation Studies on the Stability of the Vortex-Glass Order
The stability of the three-dimensional vortex-glass order in random type-II
superconductors with point disorder is investigated by equilibrium Monte Carlo
simulations based on a lattice XY model with a uniform field threading the
system. It is found that the vortex-glass order, which stably exists in the
absence of screening, is destroyed by the screenng effect, corroborating the
previous finding based on the spatially isotropic gauge-glass model. Estimated
critical exponents, however, deviate considerably from the values reported for
the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J.
Phys. Soc. Jpn. Vol.69 No.1 (2000
Longitudinal Current Dissipation in Bose-glass Superconductors
A scaling theory of vortex motion in Bose glass superconductors with currents
parallel to the common direction of the magnetic field and columnar defects is
presented. Above the Bose-glass transition the longitudinal DC resistivity
vanishes much faster than the
corresponding transverse resistivity , thus {\it reversing} the usual anisotropy of electrical transport in
the normal state of layered superconductors. In the presence of a current at an angle with the common field and columnar defect axis, the
electric field angle approaches as .
Scaling also predicts the behavior of penetration depths for the AC currents as
, and implies a {\it jump discontinuity} at in
the superfluid density describing transport parallel to the columns.Comment: 5 pages, revte
Effect of disorder on the vortex-lattice melting transition
We use a three dimensional stacked triangular network of Josephson junctions
as a model for the study of vortex structure in the mixed state of high Tc
superconductors. We show that the addition of disorder destroys the first order
melting transition occurring for clean samples. The melting transition splits
in two different (continuous) transitions, ocurring at temperatures Ti and Tp
(>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp
the parallel-to-field superconductivity is lost. These results agree well with
recent experiments in YBaCuO.Comment: 4 pages + 2 figure
- …