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Supercooling across first-order phase transitions in vortex
matter
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Abstract. Hysteresis in cycling through first-order phase transitions in vortex matter, akin to the
well-studied phenomenon of supercooling of water, has been discussed in literature. Hysteresis can
be seen while varying either temperatureT or magnetic fieldH (and thus the density of vortices).
Our recent work on phase transitions with two control variables shows that the observable region
of metastability of the supercooled phase would depend on the path followed inH�T space, and
will be larger whenT is lowered at constantH compared to the case whenH is lowered at constant
T . We discuss the effect of isothermal field variations on metastable supercooled states produced
by field-cooling. This path dependence is nota priori applicable to metastability caused by reduced
diffusivity or hindered kinetics.
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In recent years first-order phase transitions in vortex matter have been studied with both
temperature and magnetic field (or vortex density) as the control variable, and the ques-
tion of metastability has been addressed [1–3]. The phase transition temperatureTC(H)
[4] drops as magnetic field is raised, as depicted in figure 1. Vortex matter contracts on
being heated from the ordered (solid) phase to the disordered (liquid) phase, similar to the
behaviour of ice at pressures below 200 MPa [5]. Hysteresis has been reported, with both
field and temperature as the control variable, across the vortex–lattice melting transition
[1,2]. We have also reported supercooling of the higher entropy vortex–solid phase in the
polycrystalline samples of C15 Laves phase superconductor CeRu2, both on reducing field
and on reducing temperature, and have found that the supercooled state persists farther
in the latter case [3,6]. Similar signatures of supercooling have been reported in single
crystals of CeRu2, NbSe2 and YBa2Cu3O7 [7–9].

The standard treatment [10] of supercooling across a first-order transition considers that
only temperature is varied and other possible control variables (like magnetic field) are
held constant. The free-energy density is expressed in terms of the order parameterS as

f(T; S) = (r=2)S2
� wS3 + uS4; (1)
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Figure 1. We show a schematic of the phase transition lineTC(H) and the stability
limit T �(H) for the supercooled state:(H1; T1) and (H1; T2) indicate supercooled
states when vortex matter is cooled in a fieldH1. See text for details.

wherew andu are positive and temperature-independent [10]. (We will assume in this
paper that symmetry does not prohibit terms of odd order. If it does, then the free energy
would be expressed asf = (r=2)S2

�wS4+uS6, and it is easy to follow and carry through
all arguments in this paper. The assumption of the form of eq. (1) is thus made without
loss of generality.) AtT = TC the two stable states withf = 0, are atS = 0 and atS =
SC = w=(2u). These are separated by an energy barrier peaking atS = SB = w=(4u),
of heightfB = w4=(256u3). These results are independent of any assumption about
the detailed temperature dependence ofr(T ). The standard treatment [10] assumes that
r(T ) = a[T � T �], wherea is positive and temperature independent, and where d2f=dS2

at S = 0 vanishes atT = T �. Simple algebra shows that the limit of metastability on
cooling is reached atT � = TC � w2=(2ua). The limit of metastability on heating is
reached when the ordered state no longer has a local minimum inf(S). This occurs at
T �� = TC + w2=(16ua). As noted above, supercooling (or superheating) can persist till
T � (orT ��) only in the limit of infinitesimal fluctuations. The barrier height aroundS = 0
drops continuously asT is lowered belowTC, and this is depicted in figure 2. In the
presence of a fluctuation of energye f , supercooling will terminate atT0 where the energy
barrier satisfies

fB(T0) � [ef + kBT0]: (2)

Similarly, the barrier height around the ordered state drops continuously to zero asT is
raised towardsT ��, and this is depicted in figure 3. The fluctuation energy in the ordered
state will dictate when superheating will terminate.

The formulation stated above is of course valid for a first order transition in vortex-matter
as a function ofT .

Vortex-matter phase transitions are encountered inH–T space and the limit of super-
cooling(T �) is now a function ofH . This standard treatment has recently been extended
to the case where one has two control variables, viz. density and temperature. It has
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Figure 2. We show schematic free energy curves for (a) T = TC, (b) T = T1 < TC,
(c) T = T2 < T1 and (d) T = T �. The disordered state sits in a local minimum and
is stable against infinitesimal fluctuations forTC > T > T �. This local minimum
becomes shallower asT is lowered belowTC and the disordered state atT2 is unstable
to a smaller fluctuation energy than atT1.

Figure 3. We show schematic free energy curves for (a) T = T3 > TC, (b) T = T4 >

T3 and (c) T = T ��. The ordered state sits in a local minimum and is stable against
infinitesimal fluctuations forTC < T < T ��.
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been shown [11] that whenTC falls with rising density (as in water–ice below 200 MPa),
thenTC�T � will rise with rising density. If, on the other hand,TC rises with rising density
(as in water–ice above 200 MPa), thenTC�T

� will fall with rising density. This appears
consistent with experiments on ice (see figure 5 of [5]). The density of vortices rises with
increasingH , and these predictions are also consistent with our data on single crystal
CeRu2 [12]. The first order phase boundaryTC(H) can be crossed by following arbitrary
paths inH–T space.

It has been argued, however, that the very procedure of varyingH introduces fluctua-
tions, and these fluctuations will terminate supercooling at a lineT0(H) which lies above
theT �(H) line [11]. (The disordered phase can be supercooled close toT �(H) only if
T is lowered in constantH , i.e., in the field-cooled mode). While ref. [11] used a sim-
ple polynomial form off , the qualitative conclusion that theT 0(H) line lies above the
T �(H) line does not change if one chooses a more complicated form off . We now wish
to consider the case where the sample is cooled in constantH to a temperatureT satisfying
T �(H) < T < T0(H), and then subjected to an isothermal field variation. The isothermal
field variation�H produces a fluctuation energye f which increases monotonically (but
nonlinearly) with�H [11]. The field-cooled state atT corresponds to supercooling of the
disordered phase, and it sits in a local minimum of free-energy as depicted in figure 2(b)
and (c). The fluctuation energye f (and thus the isothermal field variations,�H) required
to cross-over to the absolute minimum in free energy (the ordered state) will be smaller
when the free energy barrierfB defining the local minimum is smaller. By definition,fB
vanishes on theT �(H) line. We further note thatfB decreases monotonically as one ap-
proaches theT �(H) line by monotonically varying one control variable. Since one can
move from(H1; T1) to (H1; T2) to (H1; T

�(H1)) by continuously decreasingT (see fig-
ure 1),fB will be smaller at(H1; T2) than at(H1; T1). Similarly, one can field-cool to
(H1; T2) and to(H2; T2) with H2 smaller thanH1. Since one can go from(H1; T2) to
(H2; T2) to theT �(H) line at T2 by monotonically reducingH it follows immediately
that the free energy barrierfB separating the disordered metastable state from the globally
stable ordered state will be smaller at(H2; T2) than at(H1; T2). The fluctuation energy
ef , and thus the isothermal field variation,�H , required to cause the metastable state to
transform to the ordered state will be smaller atH2 than atH1. Our heuristic arguments
can similarly be used for various other experimentally accessible paths in(H;T ) space.

We have argued that an extension [11] of the standard theory of supercooling can ex-
plain various path-dependent history effects seen in first-order phase transitions in vortex
matter. We now argue that metastability and hysteresis can have two distinct origins, with
their characteristic path-dependences. One is associated with supercooling or superheating
across a first order transition, and the supercooled state at(H;T ) produced by lowering
T in constantH is farther from equilibrium (i.e., it requires a larger perturbation to take
the metastable state to the equilibrium state) than the supercooled state produced by low-
eringH in constantT . Second, hysteresis can also be kinetic in origin, and metastable
states would be observed when the volume (say) lags behind the applied pressure because
the large viscosity of the molecules does not allow equilibrium to be reached in the ex-
perimental time window. This second origin for metastability and hysteresis would be
seenwithin a glassy phase(as distinct from across a glass transition) because a glass is
defined as a disordered material with viscosity greater than 1013 poise. This is also the
origin for M–H hysteresis seen in hard superconductors. The hysteresis seen in hard
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Figure 4. We depict schematically the path-dependence of metastability which is of (a)
kinetic and (b) supercooling origin. In case (a) there is no phase transition separating
pointsA andB. Path 2 produces a state atB which is farther from equilibrium than
that produced by path 1. In case (b) pointsA andB lie on either side of a first order
phase transition lineTC(H). Following ref. [11], path 1 produces a state atB that is
farther from equilibrium than that produced by path 2.

superconductors as one goes from(H1; T ) to (H2; T ) and back to(H1; T ) is explained
within the critical state model as due to pinning, or hindered kinetics, of vortices.

We now discuss the path-dependence of metastability when the origin is due to hindered
kinetics. We go from pointA to pointB by two different paths depicted in figure 4a, with
path 1 involving no changes in magnetic field. The critical state model, valid below the
irreversibility line of a hard type II superconductor, predicts that path 2 will result in a state
which is farther from equilibrium. Note that no phase transition line separates pointsA
andB. In figure 4b we show pointsA andB lying close to but on opposite sides of a first
order phase transition line. The arguments in ref. [11] established that path 1 will result in
a state which is farther from equilibrium. In the case of vortex matter, metastabilities due
to hindered kinetics alone thus have a path-dependence which is opposite to the metasta-
bilities associated with a first order phase transition. Whether this is applicable to all solids
exhibiting hindered kinetics needs to be established.

To conclude, we have considered the path-dependence of metastabilities associated with
a first order transition [11] as applicable to vortex matter, and made predictions on the ef-
fect of isothermal field variations on metastable states produced by field cooling. We have
argued that metastabilities can have two different origins–one kinetic and the other super-
cooling. Metastabilities that are purely kinetic in origin have a path dependence which is
opposite to that of metastabilities associated with a first order transition.
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