182 research outputs found

    Hall Anomaly and Vortex-Lattice Melting in Superconducting Single Crystal YBa2Cu3O7-d

    Full text link
    Sub-nanovolt resolution longitudinal and Hall voltages are measured in an ultra pure YBa2Cu3O7-d single crystal. The Hall anomaly and the first-order vortex-lattice melting transition are observed simultaneously. Changes in the dynamic behavior of the vortex solid and liquid are correlated with features of the Hall conductivity sxy. With the magnetic field oriented at an angle from the twin-boundaries, the Hall conductivity sharply decreases toward large negative values at the vortex-lattice melting transition.Comment: 6 pages, 2 figures included, Postscript, to appear in Phys. Rev. Let

    Disorder and thermally driven vortex-lattice melting in La{2-x}Sr{x}CuO{4} crystals

    Full text link
    Magnetization measurements in La{2-x}Sr{x}CuO{4} crystals indicate vortex order-disorder transition manifested by a sharp kink in the second magnetization peak. The transition field exhibits unique temperature dependence, namely a strong decrease with temperature in the entire measured range. This behavior rules out the conventional interpretation of a disorder-driven transition into an entangled vortex solid phase. It is shown that the transition in La{2-x}Sr{x}CuO{4} is driven by both thermally- and disorder-induced fluctuations, resulting in a pinned liquid state. We conclude that vortex solid-liquid, solid-solid and solid to pinned-liquid transitions are different manifestations of the same thermodynamic order-disorder transition, distinguished by the relative contributions of thermal and disorder-induced fluctuations.Comment: To be published in phys. Rev. B Rapid Com

    Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals

    Full text link
    We report on marked memory effects in the vortex system of twinned YBa2Cu3O7 single crystals observed in ac susceptibility measurements. We show that the vortex system can be trapped in different metastable states with variable degree of order arising in response to different system histories. The pressure exerted by the oscillating ac field assists the vortex system in ordering, locally reducing the critical current density in the penetrated outer zone of the sample. The robustness of the ordered and disordered states together with the spatial profile of the critical current density lead to the observed memory effects

    Peak effect, vortex-lattice melting-line and order - disorder transition in conventional and high-T superconductors

    Full text link
    We investigate the order - disorder transition line from a Bragg glass to an amorphous vortex glass in the H-T phase diagram of three-dimensional type-II superconductors with account of both pinning-caused and thermal fluctuations of the vortex lattice. Our approach is based on the Lindemann criterion and on results of the collective pinning theory and generalizes previous work of other authors. It is shown that the shapes of the order - disorder transition line and the vortex lattice melting curve are determined only by the Ginzburg number, which characterizes thermal fluctuations, and by a parameter which describes the strength of the quenched disorder in the flux-line lattice. In the framework of this unified approach we obtain the H-T phase diagrams for both conventional and high-Tc superconductors. Several well-known experimental results concerning the fishtail effect and the phase diagram of high-Tc superconductors are naturally explained by assuming that a peak effect in the critical current density versus H signalizes the order - disorder transition line in superconductors with point defects.Comment: 15 pages including 11 figure

    Hysteretic behavior of the vortex lattice at the onset of the second peak for HgBa2_2CuO4+δ_{4+\delta} superconductor

    Full text link
    By means of local Hall probe ac and dc permeability measurements we investigated the phase diagram of vortex matter for the HgBa2_2CuO4+δ_{4+\delta } superconductor in the regime near the critical temperature. The second peak line, HspH_{\rm sp}, in contrast to what is usually assumed, doesn't terminate at the critical temperature. Our local ac permeability measurements revealed pronounced hysteretic behavior and thermomagnetic history effects near the onset of the second peak, giving evidence for a phase transition of vortex matter from an ordered qausilattice state to a disordered glass

    Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    Get PDF
    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the <150 μm size fraction of the Namib dune at a location called Gobabeb. Gobabeb is dominated by basaltic minerals. Plagioclase, Fo56 olivine, and two Ca-Mg-Fe pyroxenes account for the majority of crystalline phases along with minor magnetite, quartz, hematite, and anhydrite. In addition to the crystalline phases, a minimum ~42 wt % of the Gobabeb sample is X-ray amorphous. Mineralogical analysis of the Gobabeb data set provides insights into the origin(s) and geologic history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMin's analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiosity's science payload, provides new insights into present and past eolian processes on Mars

    Mineralogy of Eolian Sands at Gale Crater

    Get PDF
    The Mars Science Laboratory rover Curiosity has been exploring outcrop and regolith in Gale crater since August 6, 2012. During this exploration, the mission has collected 10 samples for mineralogical analysis by X-ray diffraction (XRD), using the CheMin instrument. The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode tube source to acquire both mineralogy (from the pat-tern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A detailed description of CheMin is provided in [1]. As part of the rover checkout after landing, the first sample selected for analysis was an eolian sand deposit (the Rocknest "sand shadow"). This sample was selected in part to characterize unconsolidated eolian regolith, but primarily to prove performance of the scoop collection system on the rover. The focus of the mission after Rocknest was on the consolidated sediments of Gale crater, so all of the nine subsequent samples were collected by drilling into bedrock com-posed of lithified sedimentary materials, including mudstone and sandstone. No scoop samples have been collected since Rocknest, but at the time this abstract was written the mission stands poised to use the scoop again, to collect active dune sands from the Bagnold dune field. Several abstracts at this conference outline the Bagnold dune campaign and summarize preliminary results from analyses on approach to the Namib dune sampling site. In this abstract we review the mineralogy of Rocknest, contrast that with the mineralogy of local sediments, and anticipate what will be learned by XRD analysis of Bagnold dune sands
    corecore